
www.allitebooks.com

http://www.allitebooks.org

Spring Microservices

Build scalable microservices with Spring, Docker,
and Mesos

Rajesh RV

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Spring Microservices

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2016

Production reference: 1200616

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78646-668-6

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Rajesh RV

Reviewer
Yogendra Sharma

Commissioning Editor
Edward Gordon

Acquisition Editor
Rahul Nair

Content Development Editor
Anish Sukumaran

Technical Editors
Taabish Khan

Kunal Chaudhari

Copy Editors
Shruti Iyer

Sonia Mathur

Project Coordinator
Izzat Contractor

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Jason Monteiro

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

www.allitebooks.com

http://www.allitebooks.org

About the Author

Rajesh RV is a seasoned IT architect with extensive experience in diversified
technologies and more than 16 years of airline IT experience.

Rajesh received a degree in computer engineering from University of Cochin,
India. He joined the JEE community Spring during the early days of EJB. During
the course, as an architect, he worked on many large-scale, mission-critical projects,
including New Generation Airline Passenger Reservation System (iFlyRes) and Next
Generation Airline Cargo Reservation systems (Skychain and CROAMIS) in the
airlines domain.

At present, working as chief architect at Emirates (http://www.emirates.com/),
Rajesh is handling the solution architecture portfolio, which is spread across various
architecture capabilities, such as JEE, SOA, NoSQL, IoT, mobile, UI, integration,
and more. At Emirates, Open Travel Platform (OTP) architected by Rajesh earned
the group the prestigious 2011 RedHat Innovation Award in the Carved Out
Costs category. In 2011, he introduced the innovative concept of the Honeycomb
architecture based on the hexagonal architecture pattern used to transform the legacy
mainframe system.

Rajesh has a deep passion for technology and architecture. He also holds several
certifications, such as BEA Certified WebLogic Administrator, Sun Certified Java
Enterprise Architect, Open Group Certified TOGAF Practitioner, Licensed ZapThink
Architect in SOA, and IASA global CITA-A Certified Architecture Specialist.

Previously, Rajesh reviewed the book Service Oriented Java Business Integration,
Packt Publishing by Binildas A. Christudas.

Rajesh's social profile is available at https://www.linkedin.com/in/rajeshrv.

www.allitebooks.com

http://www.emirates.com/
http://
http://www.allitebooks.org

Acknowledgments

I would like to thank everyone I worked with closely at Packt Publishing to make my
dream come true. A special thanks to the reviewers; your in-depth reviews helped
improve the quality of this book.

This book would have never been possible without the encouragement from my
excellent colleagues at Emirates. A very special thanks goes to Neetan Chopra,
Senior Vice President, and Thomas Benjamin, Vice President, for their constant
support and help.

I would like to extend my thanks to Daniel Oor, who works as an independent
enterprise architect, for his quality input and inspiration throughout the
development of this book.

A heartfelt thanks goes to my wife, Saritha, for her tireless and unconditional
support that helped me focus on this book. I would like to thank my kids, Nikhil and
Aditya; I took away a lot of their playing hours to author this book. A huge thanks
is due to my father, Ramachandran Nair, and mother, Vasanthakumari, for their
selfless support that helped me reach where I am today.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Yogendra Sharma is a Java developer with Python background and with
experience mainly in backend development. He has completed his bachelors of
technology in computer science.

Yogendra is currently working in Pune at Siemens Industry Software Pvt. Ltd as a
product development engineer. He is constantly exploring technical novelties and is
open-minded and eager to learn about new technologies and frameworks.

Yogendra was also the technical reviewer of Mastering Python Design Patterns, Sakis
Kasampalis, and Test-Driven Development with Django, Kevin Harvey, both by Packt
Publishing.

His LinkedIn profile is available at http://in.linkedin.com/in/
yogendra0sharma. He blogs at http://TechiesEyes.com.

I would like to thank my parents for allowing me to learn all that
I did. I would also like to thank my friends for their support and
encouragement.

www.allitebooks.com

http://
http://
http://TechiesEyes.com
http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface	 xi
Chapter 1: Demystifying Microservices	 1

The evolution of microservices	 1
Business demand as a catalyst for microservices evolution	 2
Technology as a catalyst for the microservices evolution	 4
Imperative architecture evolution	 4

What are microservices?	 5
Microservices – the honeycomb analogy	 8
Principles of microservices	 8

Single responsibility per service	 8
Microservices are autonomous	 9

Characteristics of microservices	 10
Services are first-class citizens	 11

Characteristics of services in a microservice	 11
Microservices are lightweight	 12
Microservices with polyglot architecture	 13
Automation in a microservices environment	 14
Microservices with a supporting ecosystem	 15
Microservices are distributed and dynamic	 15
Antifragility, fail fast, and self-healing	 16

Microservices examples	 17
An example of a holiday portal	 17
A microservice-based order management system	 20
An example of a travel agent portal	 22

Microservices benefits	 23
Supports polyglot architecture	 23
Enabling experimentation and innovation	 24
Elastically and selectively scalable	 25

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Allowing substitution	 27
Enabling to build organic systems	 28
Helping reducing technology debt	 29
Allowing the coexistence of different versions	 30
Supporting the building of self-organizing systems	 31
Supporting event-driven architecture	 32
Enabling DevOps	 33

Relationship with other architecture styles	 33
Relations with SOA	 33

Service-oriented integration	 34
Legacy modernization	 35
Service-oriented application	 36
Monolithic migration using SOA	 36

Relations with Twelve-Factor apps	 37
A single code base	 38
Bundling dependencies	 38
Externalizing configurations	 39
Backing services are addressable	 39
Isolation between build, release, and run	 40
Stateless, shared nothing processes	 40
Exposing services through port bindings	 41
Concurrency to scale out	 41
Disposability with minimal overhead	 41
Development and production parity	 42
Externalizing logs	 42
Package admin processes	 43

Microservice use cases	 43
Microservices early adopters	 45
The common theme is monolithic migrations	 47

Summary	 48
Chapter 2: Building Microservices with Spring Boot	 49

Setting up a development environment	 49
Developing a RESTful service – the legacy approach	 50
Moving from traditional web applications to microservices	 55
Using Spring Boot to build RESTful microservices	 56
Getting started with Spring Boot	 57
Developing the Spring Boot microservice using the CLI	 57
Developing the Spring Boot Java microservice using STS	 58

Examining the POM file	 62
Examining Application.java	 64
Examining application.properties	 65
Examining ApplicationTests.java	 65
Testing the Spring Boot microservice	 67

Table of Contents

[iii]

Developing the Spring Boot microservice using
Spring Initializr – the HATEOAS example	 68
What's next?	 72
The Spring Boot configuration	 73

Understanding the Spring Boot autoconfiguration	 73
Overriding default configuration values	 74
Changing the location of the configuration file	 74
Reading custom properties	 75
Using a .yaml file for configuration	 75
Using multiple configuration profiles	 76
Other options to read properties	 76

Changing the default embedded web server	 77
Implementing Spring Boot security	 77

Securing microservices with basic security	 77
Securing a microservice with OAuth2	 79

Enabling cross-origin access for microservices	 82
Implementing Spring Boot messaging	 83
Developing a comprehensive microservice example	 86
Spring Boot actuators	 97

Monitoring using JConsole	 98
Monitoring using SSH	 99

Configuring application information	 99
Adding a custom health module	 99

Building custom metrics	 101
Documenting microservices	 102
Summary	 104

Chapter 3: Applying Microservices Concepts	 105
Patterns and common design decisions	 105

Establishing appropriate microservice boundaries	 106
Autonomous functions	 107
Size of a deployable unit	 108
Most appropriate function or subdomain	 108
Polyglot architecture	 108
Selective scaling	 108
Small, agile teams	 109
Single responsibility	 109
Replicability or changeability	 110
Coupling and cohesion	 110
Think microservice as a product	 110

Designing communication styles	 111
Synchronous style communication	 111
Asynchronous style communication	 112
How to decide which style to choose?	 112

Table of Contents

[iv]

Orchestration of microservices	 115
How many endpoints in a microservice?	 118
One microservice per VM or multiple?	 119
Rules engine – shared or embedded?	 120
Role of BPM and workflows	 121
Can microservices share data stores?	 123
Setting up transaction boundaries	 125

Altering use cases to simplify transactional requirements	 125
Distributed transaction scenarios	 126

Service endpoint design consideration	 127
Contract design	 127
Protocol selection	 127

Handling shared libraries	 129
User interfaces in microservices	 130
Use of API gateways in microservices	 131
Use of ESB and iPaaS with microservices	 133
Service versioning considerations	 134
Design for cross origin	 136
Handling shared reference data	 136
Microservices and bulk operations	 138

Microservices challenges	 139
Data islands	 139
Logging and monitoring	 140
Dependency management	 141
Organization culture	 142
Governance challenges	 142
Operation overheads	 142
Testing microservices	 143
Infrastructure provisioning	 144

The microservices capability model	 144
Core capabilities	 145
Infrastructure capabilities	 146
Supporting capabilities	 147
Process and governance capabilities	 148

Summary	 149
Chapter 4: Microservices Evolution – A Case Study	 151

Reviewing the microservices capability model	 152
Understanding the PSS application	 153

Business process view	 153
Functional view	 154
Architectural view	 154

Table of Contents

[v]

Design view	 155
Implementation view	 156
Deployment view	 157

Death of the monolith	 158
Pain points	 158
Stop gap fix	 159
Retrospection	 160

Shared data	 160
Single database	 161
Domain boundaries	 163

Microservices to the rescue	 164
The business case	 165
Plan the evolution	 165

Evolutionary approach	 166
Identification of microservices boundaries	 167

Analyze dependencies	 167
Prioritizing microservices for migration	 177
Data synchronization during migration	 178
Managing reference data	 181
User interfaces and web applications	 183

Session handling and security	 184
Test strategy	 186
Building ecosystem capabilities	 187

Migrate modules only if required	 187
Target architecture	 188

Internal layering of microservices	 189
Orchestrating microservices	 190
Integration with other systems	 191
Managing shared libraries	 191
Handling exceptions	 191

Target implementation view	 194
Implementation projects	 195
Running and testing the project	 196

Summary	 201
Chapter 5: Scaling Microservices with Spring Cloud	 203

Reviewing microservices capabilities	 204
Reviewing BrownField's PSS implementation	 204
What is Spring Cloud?	 205

Spring Cloud releases	 206
Components of Spring Cloud	 207

Spring Cloud and Netflix OSS	 210

Table of Contents

[vi]

Setting up the environment for BrownField PSS	 210
Spring Cloud Config	 211

What's next?	 214
Setting up the Config server	 214
Understanding the Config server URL	 217

Accessing the Config Server from clients	 218
Handling configuration changes	 222
Spring Cloud Bus for propagating configuration changes	 223
Setting up high availability for the Config server	 224
Monitoring the Config server health	 226
Config server for configuration files	 226
Completing changes to use the Config server	 227

Feign as a declarative REST client	 227
Ribbon for load balancing	 229
Eureka for registration and discovery	 232

Understanding dynamic service registration and discovery	 232
Understanding Eureka	 234
Setting up the Eureka server	 235
High availability for Eureka	 241

Zuul proxy as the API gateway	 244
Setting up Zuul	 245
High availability of Zuul	 249

High availability of Zuul when the client is also a Eureka client	 250
High availability when the client is not a Eureka client	 251

Completing Zuul for all other services	 251
Streams for reactive microservices	 252
Summarizing the BrownField PSS architecture	 256
Summary	 258

Chapter 6: Autoscaling Microservices	 259
Reviewing the microservice capability model	 260
Scaling microservices with Spring Cloud	 260
Understanding the concept of autoscaling	 262

The benefits of autoscaling	 263
Different autoscaling models	 265

Autoscaling an application	 266
Autoscaling the infrastructure	 266

Autoscaling in the cloud	 267
Autoscaling approaches	 268

Scaling with resource constraints	 268
Scaling during specific time periods	 269
Scaling based on the message queue length	 270

Table of Contents

[vii]

Scaling based on business parameters	 270
Predictive autoscaling	 271

Autoscaling BrownField PSS microservices	 272
The capabilities required for an autoscaling system	 272
Implementing a custom life cycle manager using Spring Boot	 274
Understanding the deployment topology	 274
Understanding the execution flow	 275
A walkthrough of the life cycle manager code	 277
Running the life cycle manager	 281

Summary	 282
Chapter 7: Logging and Monitoring Microservices	 283

Reviewing the microservice capability model	 284
Understanding log management challenges	 284
A centralized logging solution	 286
The selection of logging solutions	 288

Cloud services	 288
Off-the-shelf solutions	 288
Best-of-breed integration	 288

Log shippers	 289
Log stream processors	 289
Log storage	 289
Dashboards	 290

A custom logging implementation	 290
Distributed tracing with Spring Cloud Sleuth	 293

Monitoring microservices	 297
Monitoring challenges	 298
Monitoring tools	 300
Monitoring microservice dependencies	 301
Spring Cloud Hystrix for fault-tolerant microservices	 302
Aggregating Hystrix streams with Turbine	 307

Data analysis using data lakes	 310
Summary	 311

Chapter 8: Containerizing Microservices with Docker	 313
Reviewing the microservice capability model	 314
Understanding the gaps in BrownField PSS microservices	 314
What are containers?	 316
The difference between VMs and containers	 317
The benefits of containers	 319
Microservices and containers	 320

Table of Contents

[viii]

Introduction to Docker	 321
The key components of Docker	 322

The Docker daemon	 322
The Docker client	 322

Docker concepts	 323
Docker images	 323
Docker containers	 325
The Docker registry	 325
Dockerfile	 326

Deploying microservices in Docker	 326
Running RabbitMQ on Docker	 330
Using the Docker registry	 330

Setting up the Docker Hub	 331
Publishing microservices to the Docker Hub	 331

Microservices on the cloud	 332
Installing Docker on AWS EC2	 332

Running BrownField services on EC2	 332
Updating the life cycle manager	 334
The future of containerization – unikernels and hardened security	 334
Summary	 335

Chapter 9: Managing Dockerized Microservices with Mesos
and Marathon	 337

Reviewing the microservice capability model	 338
The missing pieces	 338
Why cluster management is important	 340
What does cluster management do?	 341
Relationship with microservices	 344
Relationship with virtualization	 344
Cluster management solutions	 344

Docker Swarm	 345
Kubernetes	 346
Apache Mesos	 346
Nomad	 347
Fleet	 347

Cluster management with Mesos and Marathon	 348
Diving deep into Mesos	 348

The Mesos architecture	 349
Marathon	 352

Implementing Mesos and Marathon for BrownField microservices	 353
Setting up AWS	 354
Installing ZooKeeper, Mesos, and Marathon	 355

Configuring ZooKeeper	 356

Table of Contents

[ix]

Configuring Mesos	 357
Running Mesos, Marathon, and ZooKeeper as services	 358
Preparing BrownField PSS services	 361
Deploying BrownField PSS services	 363
Reviewing the deployment	 365

A place for the life cycle manager	 367
Rewriting the life cycle manager with Mesos and Marathon	 368

The technology metamodel	 368
Summary	 369

Chapter 10: The Microservices Development Life Cycle	 371
Reviewing the microservice capability model	 372
The new mantra of lean IT – DevOps	 372

Reducing wastage	 374
Automating every possible step	 374
Value-driven delivery	 374
Bridging development and operations	 375

Meeting the trio – microservices, DevOps, and cloud	 375
Cloud as the self-service infrastructure for Microservices	 376
DevOps as the practice and process for microservices	 376

Practice points for microservices development	 377
Understanding business motivation and value	 377
Changing the mindset from project to product development	 377
Choosing a development philosophy	 378

Design thinking	 378
The start-up model	 379
The Agile practice	 379

Using the concept of Minimum Viable Product	 380
Overcoming the legacy hotspot	 380
Addressing challenges around databases	 381
Establishing self-organizing teams	 381
Building a self-service cloud	 384
Building a microservices ecosystem	 384
Defining a DevOps-style microservice life cycle process	 385

Value-driven planning	 386
Agile development	 386
Continuous integration	 386
Continuous testing	 387
Continuous release	 387
Continuous monitoring and feedback	 387

Automating the continuous delivery pipeline	 387
Development	 389
Continuous integration	 390
Automated testing	 391

Table of Contents

[x]

Continuous deployment	 397
Monitoring and feedback	 397

Automated configuration management	 397
Microservices development governance, reference architectures,
and libraries	 398
Summary	 398

Index	 399

[xi]

Preface
Microservice is an architecture style and pattern in which complex systems are
decomposed into smaller services that work together to form larger business services.
Microservices are services that are autonomous, self-contained, and independently
deployable. In today's world, many enterprises use microservices as the default
standard for building large, service-oriented enterprise applications.

The Spring framework is a popular programming framework with the developer
community for many years. Spring Boot removed the need to have a heavyweight
application container and provided a means to deploy lightweight, server-less
applications. Spring Cloud combines many Netflix OSS components and provides an
ecosystem to run and manage large-scale microservices. It provides capabilities such
as load balancing, service registry, monitoring, service gateway, and so on.

However, microservices come with their own challenges, such as monitoring,
managing, distributing, scaling, discovering, and so on, especially when deploying
at scale. Adopting microservices without addressing the common microservices
challenges would lead to catastrophic results. The most important part of this book
is a technology-agnostic microservice capability model that helps address all the
common microservice challenges.

The goal of this book is to enlighten readers with a pragmatic approach and
guidelines for implementing responsive microservices at scale. This book will
take readers on a deep dive into Spring Boot, Spring Cloud, Docker, Mesos, and
Marathon. Readers of this book will understand how Spring Boot is used to deploy
autonomous services server-less by removing the need to have a heavyweight
application server. Readers will learn different Spring Cloud capabilities and also
realize the use of Docker for containerization and of Mesos and Marathon for
compute resource abstraction and cluster-wide control, respectively.

Preface

[xii]

I am sure readers will enjoy each and every section of this book. Also, I honestly
believe that this book adds tremendous value by successfully conceiving microservices
in your business. Throughout this book, I have used practical aspects of microservices
implementation by providing a number of examples, including a case study from
the travel domain. In the end, you will have learned how to implement microservice
architectures using the Spring framework, Spring Boot, and Spring Cloud. These are
battle-tested, robust tools to develop and deploy scalable microservices. Written to
the latest specifications of Spring, with the help of this book, you'll be able to build
modern, Internet-scale Java applications in no time.

What this book covers
Chapter 1, Demystifying Microservices, gives you an introduction to microservices.
This chapter covers the fundamental concepts of microservices, their evolution, and
their relationship with service-oriented architecture, as well as the concepts of cloud
native and Twelve-Factor applications.

Chapter 2, Building Microservices with Spring Boot, introduces building REST- and
message-based microservices using the Spring framework and how to wrap them
with Spring Boot. In addition, we will also explore some core capabilities of Spring
Boot.

Chapter 3, Applying Microservices Concepts, explains the practical aspects of
microservices implementation by detailing out the challenges that developers face
with enterprise-grade microservices. This will also summarize the capabilities
required to successfully manage a microservices ecosystem.

Chapter 4, Microservices Evolution – A Case Study, takes the readers into a real-world
case study of microservices evolution by introducing BrownField Airline. Using the
case study, this chapter explains how to apply the microservices concepts learned in
previous chapters.

Chapter 5, Scaling Microservices with Spring Cloud, shows how to scale the previous
example using Spring Cloud stack capabilities. It details out the architecture and
different components of Spring Cloud and how they integrate together.

Chapter 6, Autoscaling Microservices, demonstrates the use of a simple life cycle
manager to attain elasticity and the self-management of microservices by
orchestrating services with service gateways. It explains how, in the real world,
one can add intelligence to service gateways.

Preface

[xiii]

Chapter 7, Logging and Monitoring Microservices, covers the importance of logging and
monitoring aspects when developing microservices. Here, we will go into the details
of some of the best practices when using microservices such as centralized logging
and monitoring capabilities using open source tools and how to integrate them with
Spring projects.

Chapter 8, Containerizing Microservices with Docker, explains containerization
concepts in the context of microservices. Using Mesos and Marathon, this chapter
demonstrates a next-level implementation to replace a custom life cycle manager for
large deployments.

Chapter 9, Managing Dockerized Microservices with Mesos and Marathon, explains the
autoprovisioning and deployment of microservices. Here, you will also learn how to
use Docker containers in the previous example for large-scale deployments.

Chapter 10, The Microservices Development Life Cycle, covers the process and practices
of microservices development. The importance of DevOps and continuous delivery
pipelines is also explained in this chapter.

What you need for this book
Chapter 2, Building Microservices with Spring Boot, introduces Spring Boot, which
requires the following software components to test the code:

•	 JDK 1.8
•	 Spring Tool Suite 3.7.2 (STS)
•	 Maven 3.3.1
•	 Spring Framework 4.2.6.RELEASE
•	 Spring Boot 1.3.5.RELEASE
•	 spring-boot-cli-1.3.5.RELEASE-bin.zip

•	 RabbitMQ 3.5.6
•	 FakeSMTP

In Chapter 5, Scaling Microservices with Spring Cloud, you will learn about the Spring
Cloud project. This requires the following software components in addition to the
previously mentioned ones:

•	 Spring Cloud Brixton.RELEASE

Preface

[xiv]

In Chapter 7, Logging and Monitoring Microservices, we will take a look at how
centralized logging can be implemented for microservices. This requires the
following software stack:

•	 Elasticsearch 1.5.2
•	 kibana-4.0.2-darwin-x64

•	 Logstash 2.1.2

In Chapter 8, Containerizing Microservices with Docker, we will demonstrate how we
can use Docker for microservices deployments. This requires the following software
components:

•	 Docker version 1.10.1
•	 Docker Hub

Chapter 9, Managing Dockerized Microservices with Mesos and Marathon, uses Mesos
and Marathon to deploy dockerized microservices into an autoscalable cloud. The
following software components are required for this purpose:

•	 Mesos version 0.27.1
•	 Docker version 1.6.2
•	 Marathon version 0.15.3

Who this book is for
This book is primarily for Spring developers who are looking to build cloud-
ready Internet-scale applications to meet modern business demands. The book
will help developers to understand what exactly microservices are and why they
are important in today's world by examining a number of real-world use cases
and hands-on code samples. Developers will understand how to build simple
RESTful services and organically grow them to truly enterprise-grade microservices
ecosystem.

This book will be interesting to architects who are seeking help on designing robust
Internet-scale microservices using the Spring framework, Spring Boot, and Spring
Cloud and managing them using Docker, Mesos, and Marathon. The capability
model will help architects devise solutions even beyond the tools and technologies
discussed in this book.

Preface

[xv]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The following properties can be set in application.properties to customize
application-related information."

A block of code is set as follows:

<parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.3.4.RELEASE</version>
</parent>

 When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

eureka-server2.properties
eureka.client.serviceUrl.defaultZone:http://localhost:8761/eureka/
eureka.client.registerWithEureka:false
eureka.client.fetchRegistry:false

 Any command-line input or output is written as follows:

$ java -jar fakeSMTP-2.0.jar

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Click on the Make Request button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.
2.	 Hover the mouse pointer on the SUPPORT tab at the top.
3.	 Click on Code Downloads & Errata.
4.	 Enter the name of the book in the Search box.
5.	 Select the book for which you're looking to download the code files.
6.	 Choose from the drop-down menu where you purchased this book from.
7.	 Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by entering
the book's name in the Search box. Please note that you need to be logged in to your
Packt account.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xvii]

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for Mac
•	 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Spring-Microservices. We also have other code bundles
from our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

https://github.com/PacktPublishing/Spring-Microservices
https://github.com/PacktPublishing/Spring-Microservices
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xviii]

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Demystifying Microservices
Microservices are an architecture style and an approach for software development to
satisfy modern business demands. Microservices are not invented; they are more of
an evolution from the previous architecture styles.

We will start the chapter by taking a closer look at the evolution of the microservices
architecture from the traditional monolithic architectures. We will also examine the
definition, concepts, and characteristics of microservices. Finally, we will analyze
typical use cases of microservices and establish the similarities and relationships
between microservices and other architecture approaches such as Service Oriented
Architecture (SOA) and Twelve-Factor Apps. Twelve-Factor Apps defines a set of
software engineering principles of developing applications targeting the cloud.

In this chapter you, will learn about:

•	 The evolution of microservices
•	 The definition of the microservices architecture with examples
•	 Concepts and characteristics of the microservices architecture
•	 Typical use cases of the microservices architecture
•	 The relationship of microservices with SOA and Twelve-Factor Apps

The evolution of microservices
Microservices are one of the increasingly popular architecture patterns next to
SOA, complemented by DevOps and cloud. The microservices evolution is greatly
influenced by the disruptive digital innovation trends in modern business and the
evolution of technologies in the last few years. We will examine these two factors
in this section.

Demystifying Microservices

[2]

Business demand as a catalyst for
microservices evolution
In this era of digital transformation, enterprises increasingly adopt technologies as
one of the key enablers for radically increasing their revenue and customer base.
Enterprises primarily use social media, mobile, cloud, big data, and Internet of
Things as vehicles to achieve the disruptive innovations. Using these technologies,
enterprises find new ways to quickly penetrate the market, which severely pose
challenges to the traditional IT delivery mechanisms.

The following graph shows the state of traditional development and microservices
against the new enterprise challenges such as agility, speed of delivery, and scale.

Microservices promise more agility, speed of delivery, and scale
compared to traditional monolithic applications.

Gone are the days when businesses invested in large application developments
with the turnaround time of a few years. Enterprises are no longer interested in
developing consolidated applications to manage their end-to-end business functions
as they did a few years ago.

The following graph shows the state of traditional monolithic applications and
microservices in comparison with the turnaround time and cost.

Chapter 1

[3]

Microservices provide an approach for developing quick and agile
applications, resulting in less overall cost.

Today, for instance, airlines or financial institutions do not invest in rebuilding
their core mainframe systems as another monolithic monster. Retailers and other
industries do not rebuild heavyweight supply chain management applications, such
as their traditional ERPs. Focus has shifted to building quick-win point solutions that
cater to specific needs of the business in the most agile way possible.

Let's take an example of an online retailer running with a legacy monolithic
application. If the retailer wants to innovate his/her sales by offering their products
personalized to a customer based on the customer's past shopping, preferences, and
so on and also wants to enlighten customers by offering products based on their
propensity to buy them, they will quickly develop a personalization engine or offers
based on their immediate needs and plug them into their legacy application.

As shown in the preceding diagram, rather than investing in rebuilding the core
legacy system, this will be either done by passing the responses through the new
functions, as shown in the diagram marked A, or by modifying the core legacy
system to call out these functions as part of the processing, as shown in the diagram
marked B. These functions are typically written as microservices.

This approach gives organizations a plethora of opportunities to quickly try out new
functions with lesser cost in an experimental mode. Businesses can later validate key
performance indicators and alter or replace these implementations if required.

www.allitebooks.com

http://www.allitebooks.org

Demystifying Microservices

[4]

Modern architectures are expected to maximize the ability to replace
their parts and minimize the cost of replacing their parts. The
microservices approach is a means to achieving this.

Technology as a catalyst for the
microservices evolution
Emerging technologies have also made us rethink the way we build software
systems. For example, a few decades back, we couldn't even imagine a distributed
application without a two-phase commit. Later, NoSQL databases made us think
differently.

Similarly, these kinds of paradigm shifts in technology have reshaped all the layers
of the software architecture.

The emergence of HTML 5 and CSS3 and the advancement of mobile applications
repositioned user interfaces. Client-side JavaScript frameworks such as Angular,
Ember, React, Backbone, and so on are immensely popular due to their client-side
rendering and responsive designs.

With cloud adoptions steamed into the mainstream, Platform as a Services
(PaaS) providers such as Pivotal CF, AWS, Salesforce.com, IBMs Bluemix, RedHat
OpenShift, and so on made us rethink the way we build middleware components.
The container revolution created by Docker radically influenced the infrastructure
space. These days, an infrastructure is treated as a commodity service.

The integration landscape has also changed with Integration Platform as a Service
(iPaaS), which is emerging. Platforms such as Dell Boomi, Informatica, MuleSoft,
and so on are examples of iPaaS. These tools helped organizations stretch integration
boundaries beyond the traditional enterprise.

NoSQLs have revolutionized the databases space. A few years ago, we had only a
few popular databases, all based on relational data modeling principles. We have
a long list of databases today: Hadoop, Cassandra, CouchDB, and Neo 4j to name
a few. Each of these databases addresses certain specific architectural problems.

Imperative architecture evolution
Application architecture has always been evolving alongside demanding business
requirements and the evolution of technologies. Architectures have gone through
the evolution of age-old mainframe systems to fully abstract cloud services such
as AWS Lambda.

Chapter 1

[5]

Using AWS Lambda, developers can now drop their "functions" into
a fully managed compute service.
Read more about Lambda at: https://aws.amazon.com/
documentation/lambda/

Different architecture approaches and styles such as mainframes, client server,
N-tier, and service-oriented were popular at different timeframes. Irrespective of
the choice of architecture styles, we always used to build one or the other forms
of monolithic architectures. The microservices architecture evolved as a result
of modern business demands such as agility and speed of delivery, emerging
technologies, and learning from previous generations of architectures.

Microservices help us break the boundaries of monolithic applications and build a
logically independent smaller system of systems, as shown in the preceding diagram.

If we consider monolithic applications as a set of logical
subsystems encompassed with a physical boundary, microservices
are a set of independent subsystems with no enclosing physical
boundary.

What are microservices?
Microservices are an architecture style used by many organizations today as a game
changer to achieve a high degree of agility, speed of delivery, and scale. Microservices
give us a way to develop more physically separated modular applications.

Microservices are not invented. Many organizations such as Netflix, Amazon, and
eBay successfully used the divide-and-conquer technique to functionally partition
their monolithic applications into smaller atomic units, each performing a single
function. These organizations solved a number of prevailing issues they were
experiencing with their monolithic applications.

https://aws.amazon.com/documentation/lambda/
https://aws.amazon.com/documentation/lambda/

Demystifying Microservices

[6]

Following the success of these organizations, many other organizations started
adopting this as a common pattern to refactor their monolithic applications. Later,
evangelists termed this pattern as the microservices architecture.

Microservices originated from the idea of hexagonal architecture coined by Alistair
Cockburn. Hexagonal architecture is also known as the Ports and Adapters pattern.

Read more about hexagonal architecture at http://alistair.
cockburn.us/Hexagonal+architecture.

Microservices are an architectural style or an approach to building IT systems as a set
of business capabilities that are autonomous, self-contained, and loosely coupled:

The preceding diagram depicts a traditional N-tier application architecture having
a presentation layer, business layer, and database layer. The modules A, B, and C
represent three different business capabilities. The layers in the diagram represent a
separation of architecture concerns. Each layer holds all three business capabilities
pertaining to this layer. The presentation layer has web components of all the three
modules, the business layer has business components of all the three modules, and
the database hosts tables of all the three modules. In most cases, layers are physically
spreadable, whereas modules within a layer are hardwired.

http://alistair.cockburn.us/Hexagonal+architecture
http://alistair.cockburn.us/Hexagonal+architecture

Chapter 1

[7]

Let's now examine a microservices-based architecture.

As we can note in the preceding diagram, the boundaries are inversed in the
microservices architecture. Each vertical slice represents a microservice. Each
microservice has its own presentation layer, business layer, and database layer.
Microservices are aligned towards business capabilities. By doing so, changes
to one microservice do not impact others.

There is no standard for communication or transport mechanisms for microservices.
In general, microservices communicate with each other using widely adopted
lightweight protocols, such as HTTP and REST, or messaging protocols, such as
JMS or AMQP. In specific cases, one might choose more optimized communication
protocols, such as Thrift, ZeroMQ, Protocol Buffers, or Avro.

As microservices are more aligned to business capabilities and have independently
manageable life cycles, they are the ideal choice for enterprises embarking on
DevOps and cloud. DevOps and cloud are two facets of microservices.

DevOps is an IT realignment to narrow the gap between traditional IT
development and operations for better efficiency.
Read more about DevOps:
http://dev2ops.org/2010/02/what-is-devops/

http://dev2ops.org/2010/02/what-is-devops/

Demystifying Microservices

[8]

Microservices – the honeycomb analogy
The honeycomb is an ideal analogy for representing the evolutionary microservices
architecture.

In the real world, bees build a honeycomb by aligning hexagonal wax cells. They
start small, using different materials to build the cells. Construction is based on
what is available at the time of building. Repetitive cells form a pattern and result
in a strong fabric structure. Each cell in the honeycomb is independent but also
integrated with other cells. By adding new cells, the honeycomb grows organically
to a big, solid structure. The content inside each cell is abstracted and not visible
outside. Damage to one cell does not damage other cells, and bees can reconstruct
these cells without impacting the overall honeycomb.

Principles of microservices
In this section, we will examine some of the principles of the microservices
architecture. These principles are a "must have" when designing and developing
microservices.

Single responsibility per service
The single responsibility principle is one of the principles defined as part of the
SOLID design pattern. It states that a unit should only have one responsibility.

Read more about the SOLID design pattern at:
http://c2.com/cgi/wiki?PrinciplesOfObjectOrientedDes
ign

http://c2.com/cgi/wiki?PrinciplesOfObjectOrientedDesign
http://c2.com/cgi/wiki?PrinciplesOfObjectOrientedDesign

Chapter 1

[9]

This implies that a unit, either a class, a function, or a service, should have only one
responsibility. At no point should two units share one responsibility or one unit have
more than one responsibility. A unit with more than one responsibility indicates
tight coupling.

As shown in the preceding diagram, Customer, Product, and Order are different
functions of an e-commerce application. Rather than building all of them into one
application, it is better to have three different services, each responsible for exactly
one business function, so that changes to one responsibility will not impair others.
In the preceding scenario, Customer, Product, and Order will be treated as three
independent microservices.

Microservices are autonomous
Microservices are self-contained, independently deployable, and autonomous
services that take full responsibility of a business capability and its execution.
They bundle all dependencies, including library dependencies, and execution
environments such as web servers and containers or virtual machines that abstract
physical resources.

One of the major differences between microservices and SOA is in their level of
autonomy. While most SOA implementations provide service-level abstraction,
microservices go further and abstract the realization and execution environment.

Demystifying Microservices

[10]

In traditional application developments, we build a WAR or an EAR, then deploy
it into a JEE application server, such as with JBoss, WebLogic, WebSphere, and
so on. We may deploy multiple applications into the same JEE container. In the
microservices approach, each microservice will be built as a fat Jar, embedding all
dependencies and run as a standalone Java process.

Microservices may also get their own containers for execution, as shown in the
preceding diagram. Containers are portable, independently manageable, lightweight
runtime environments. Container technologies, such as Docker, are an ideal choice
for microservices deployment.

Characteristics of microservices
The microservices definition discussed earlier in this chapter is arbitrary. Evangelists
and practitioners have strong but sometimes different opinions on microservices.
There is no single, concrete, and universally accepted definition for microservices.
However, all successful microservices implementations exhibit a number of common
characteristics. Therefore, it is important to understand these characteristics rather
than sticking to theoretical definitions. Some of the common characteristics are
detailed in this section.

Chapter 1

[11]

Services are first-class citizens
In the microservices world, services are first-class citizens. Microservices expose
service endpoints as APIs and abstract all their realization details. The internal
implementation logic, architecture, and technologies (including programming
language, database, quality of services mechanisms, and so on) are completely
hidden behind the service API.

Moreover, in the microservices architecture, there is no more application
development; instead, organizations focus on service development. In most
enterprises, this requires a major cultural shift in the way that applications are built.

In a Customer Profile microservice, internals such as the data structure, technologies,
business logic, and so on are hidden. They aren't exposed or visible to any external
entities. Access is restricted through the service endpoints or APIs. For instance,
Customer Profile microservices may expose Register Customer and Get Customer
as two APIs for others to interact with.

Characteristics of services in a microservice
As microservices are more or less like a flavor of SOA, many of the service
characteristics defined in the SOA are applicable to microservices as well.

The following are some of the characteristics of services that are applicable to
microservices as well:

•	 Service contract: Similar to SOA, microservices are described through
well-defined service contracts. In the microservices world, JSON and REST
are universally accepted for service communication. In the case of JSON/
REST, there are many techniques used to define service contracts. JSON
Schema, WADL, Swagger, and RAML are a few examples.

•	 Loose coupling: Microservices are independent and loosely coupled. In
most cases, microservices accept an event as input and respond with another
event. Messaging, HTTP, and REST are commonly used for interaction
between microservices. Message-based endpoints provide higher levels
of decoupling.

•	 Service abstraction: In microservices, service abstraction is not just an
abstraction of service realization, but it also provides a complete abstraction
of all libraries and environment details, as discussed earlier.

•	 Service reuse: Microservices are course-grained reusable business
services. These are accessed by mobile devices and desktop channels,
other microservices, or even other systems.

Demystifying Microservices

[12]

•	 Statelessness: Well-designed microservices are stateless and share nothing
with no shared state or conversational state maintained by the services.
In case there is a requirement to maintain state, they are maintained in
a database, perhaps in memory.

•	 Services are discoverable: Microservices are discoverable. In a typical
microservices environment, microservices self-advertise their existence
and make themselves available for discovery. When services die, they
automatically take themselves out from the microservices ecosystem.

•	 Service interoperability: Services are interoperable as they use standard
protocols and message exchange standards. Messaging, HTTP, and so on are
used as transport mechanisms. REST/JSON is the most popular method for
developing interoperable services in the microservices world. In cases where
further optimization is required on communications, other protocols such as
Protocol Buffers, Thrift, Avro, or Zero MQ could be used. However, the use
of these protocols may limit the overall interoperability of the services.

•	 Service composeability: Microservices are composeable. Service
composeability is achieved either through service orchestration or
service choreography.

More detail on SOA principles can be found at:
http://serviceorientation.com/serviceorientation/index

Microservices are lightweight
Well-designed microservices are aligned to a single business capability, so they
perform only one function. As a result, one of the common characteristics we see
in most of the implementations are microservices with smaller footprints.

When selecting supporting technologies, such as web containers, we will have
to ensure that they are also lightweight so that the overall footprint remains
manageable. For example, Jetty or Tomcat are better choices as application containers
for microservices compared to more complex traditional application servers such as
WebLogic or WebSphere.

Container technologies such as Docker also help us keep the infrastructure footprint
as minimal as possible compared to hypervisors such as VMWare or Hyper-V.

http://serviceorientation.com/serviceorientation/index

Chapter 1

[13]

As shown in the preceding diagram, microservices are typically deployed in Docker
containers, which encapsulate the business logic and needed libraries. This help us
quickly replicate the entire setup on a new machine or on a completely different
hosting environment or even to move across different cloud providers. As there is no
physical infrastructure dependency, containerized microservices are easily portable.

Microservices with polyglot architecture
As microservices are autonomous and abstract everything behind service APIs, it is
possible to have different architectures for different microservices. A few common
characteristics that we see in microservices implementations are:

•	 Different services use different versions of the same technologies. One
microservice may be written on Java 1.7, and another one could be on Java 1.8.

•	 Different languages are used to develop different microservices, such as one
microservice is developed in Java and another one in Scala.

•	 Different architectures are used, such as one microservice using the Redis
cache to serve data, while another microservice could use MySQL as a
persistent data store.

Demystifying Microservices

[14]

In the preceding example, as Hotel Search is expected to have high transaction
volumes with stringent performance requirements, it is implemented using Erlang.
In order to support predictive searching, Elasticsearch is used as the data store.
At the same time, Hotel Booking needs more ACID transactional characteristics.
Therefore, it is implemented using MySQL and Java. The internal implementations
are hidden behind service endpoints defined as REST/JSON over HTTP.

Automation in a microservices environment
Most of the microservices implementations are automated to a maximum from
development to production.

As microservices break monolithic applications into a number of smaller services,
large enterprises may see a proliferation of microservices. A large number of
microservices is hard to manage until and unless automation is in place. The smaller
footprint of microservices also helps us automate the microservices development to
the deployment life cycle. In general, microservices are automated end to end—for
example, automated builds, automated testing, automated deployment, and elastic
scaling.

As indicated in the preceding diagram, automations are typically applied during the
development, test, release, and deployment phases:

•	 The development phase is automated using version control tools such as Git
together with Continuous Integration (CI) tools such as Jenkins, Travis CI,
and so on. This may also include code quality checks and automation of unit
testing. Automation of a full build on every code check-in is also achievable
with microservices.

•	 The testing phase will be automated using testing tools such as Selenium,
Cucumber, and other AB testing strategies. As microservices are aligned to
business capabilities, the number of test cases to automate is fewer compared
to monolithic applications, hence regression testing on every build also
becomes possible.

•	 Infrastructure provisioning is done through container technologies such as
Docker, together with release management tools such as Chef or Puppet, and
configuration management tools such as Ansible. Automated deployments are
handled using tools such as Spring Cloud, Kubernetes, Mesos, and Marathon.

Chapter 1

[15]

Microservices with a supporting ecosystem
Most of the large-scale microservices implementations have a supporting ecosystem
in place. The ecosystem capabilities include DevOps processes, centralized log
management, service registry, API gateways, extensive monitoring, service routing,
and flow control mechanisms.

Microservices work well when supporting capabilities are in place, as represented in
the preceding diagram.

Microservices are distributed and dynamic
Successful microservices implementations encapsulate logic and data within the
service. This results in two unconventional situations: distributed data and logic
and decentralized governance.

Compared to traditional applications, which consolidate all logic and data into
one application boundary, microservices decentralize data and logic. Each service,
aligned to a specific business capability, owns its data and logic.

Logical System Boundary (as in monolithic)

Microservice A

A

Data

A

Logic

Microservice B

B

Data

B

Logic

Microservice C

C

Data

C

Logic

The dotted line in the preceding diagram implies the logical monolithic application
boundary. When we migrate this to microservices, each microservice A, B, and C
creates its own physical boundaries.

Demystifying Microservices

[16]

Microservices don't typically use centralized governance mechanisms the way
they are used in SOA. One of the common characteristics of microservices
implementations is that they do not relay on heavyweight enterprise-level products,
such as Enterprise Service Bus (ESB). Instead, the business logic and intelligence are
embedded as a part of the services themselves.

A typical SOA implementation is shown in the preceding diagram. Shopping logic is
fully implemented in ESB by orchestrating different services exposed by Customer,
Order, and Product. In the microservices approach, on the other hand, Shopping
itself will run as a separate microservice, which interacts with Customer, Product,
and Order in a fairly decoupled way.

SOA implementations heavily relay on static registry and repository configurations
to manage services and other artifacts. Microservices bring a more dynamic nature
into this. Hence, a static governance approach is seen as an overhead in maintaining
up-to-date information. This is why most of the microservices implementations use
automated mechanisms to build registry information dynamically from the runtime
topologies.

Antifragility, fail fast, and self-healing
Antifragility is a technique successfully experimented at Netflix. It is one of the most
powerful approaches to building fail-safe systems in modern software development.

The antifragility concept is introduced by Nassim Nicholas Taleb in his
book Antifragile: Things That Gain from Disorder.

In the antifragility practice, software systems are consistently challenged. Software
systems evolve through these challenges and, over a period of time, get better and
better at withstanding these challenges. Amazon's GameDay exercise and Netflix'
Simian Army are good examples of such antifragility experiments.

Chapter 1

[17]

Fail fast is another concept used to build fault-tolerant, resilient systems. This
philosophy advocates systems that expect failures versus building systems that never
fail. Importance should be given to how quickly the system can fail and if it fails,
how quickly it can recover from this failure. With this approach, the focus is shifted
from Mean Time Between Failures (MTBF) to Mean Time To Recover (MTTR).
A key advantage of this approach is that if something goes wrong, it kills itself, and
downstream functions aren't stressed.

Self-healing is commonly used in microservices deployments, where the system
automatically learns from failures and adjusts itself. These systems also prevent
future failures.

Microservices examples
There is no "one size fits all" approach when implementing microservices. In this
section, different examples are analyzed to crystalize the microservices concept.

An example of a holiday portal
In the first example, we will review a holiday portal, Fly By Points. Fly By Points
collects points that are accumulated when a customer books a hotel, flight, or car
through the online website. When the customer logs in to the Fly By Points website,
he/she is able to see the points accumulated, personalized offers that can be availed
of by redeeming the points, and upcoming trips if any.

Demystifying Microservices

[18]

Let's assume that the preceding page is the home page after login. There are two
upcoming trips for Jeo, four personalized offers, and 21,123 loyalty points. When
the user clicks on each of the boxes, the details are queried and displayed.

The holiday portal has a Java Spring-based traditional monolithic application
architecture, as shown in the following:

As shown in the preceding diagram, the holiday portal's architecture is web-based
and modular, with a clear separation between layers. Following the usual practice,
the holiday portal is also deployed as a single WAR file on a web server such as
Tomcat. Data is stored on an all-encompassing backing relational database. This is a
good fit for the purpose architecture when the complexities are few. As the business
grows, the user base expands, and the complexity also increases. This results in a
proportional increase in transaction volumes. At this point, enterprises should look
to rearchitecting the monolithic application to microservices for better speed of
delivery, agility, and manageability.

Chapter 1

[19]

Examining the simple microservices version of this application, we can immediately
note a few things in this architecture:

•	 Each subsystem has now become an independent system by itself, a
microservice. There are three microservices representing three business
functions: Trips, Offers, and Points. Each one has its internal data store
and middle layer. The internal structure of each service remains the same.

•	 Each service encapsulates its own database as well as its own HTTP listener.
As opposed to the previous model, there is no web server or WAR. Instead,
each service has its own embedded HTTP listener, such as Jetty, Tomcat,
and so on.

•	 Each microservice exposes a REST service to manipulate the resources/entity
that belong to this service.

It is assumed that the presentation layer is developed using a client-side JavaScript
MVC framework such as Angular JS. These client-side frameworks are capable of
invoking REST calls directly.

When the web page is loaded, all the three boxes, Trips, Offers, and Points will be
displayed with details such as points, the number of offers, and the number of trips.
This will be done by each box independently making asynchronous calls to the
respective backend microservices using REST. There is no dependency between the
services at the service layer. When the user clicks on any of the boxes, the screen will
be transitioned and will load the details of the item clicked on. This will be done by
making another call to the respective microservice.

Demystifying Microservices

[20]

A microservice-based order management
system
Let's examine another microservices example: an online retail website. In this
case, we will focus more on the backend services, such as the Order Service which
processes the Order Event generated when a customer places an order through
the website:

This microservices system is completely designed based on reactive programming
practices.

Read more on reactive programming at:
http://www.reactivemanifesto.org

When an event is published, a number of microservices are ready to kick-start upon
receiving the event. Each one of them is independent and does not rely on other
microservices. The advantage of this model is that we can keep adding or replacing
microservices to achieve specific needs.

http://www.reactivemanifesto.org

Chapter 1

[21]

In the preceding diagram, there are eight microservices shown. The following
activities take place upon the arrival of Order Event:

1.	 Order Service kicks off when Order Event is received. Order Service creates
an order and saves the details to its own database.

2.	 If the order is successfully saved, Order Successful Event is created by Order
Service and published.

3.	 A series of actions take place when Order Successful Event arrives.
4.	 Delivery Service accepts the event and places Delivery Record to deliver the

order to the customer. This, in turn, generates Delivery Event and publishes
the event.

5.	 Trucking Service picks up Delivery Event and processes it. For instance,
Trucking Service creates a trucking plan.

6.	 Customer Notification Service sends a notification to the customer informing
the customer that an order is placed.

7.	 Inventory Cache Service updates the inventory cache with the available
product count.

8.	 Stock Reorder Service checks whether the stock limits are adequate and
generates Replenish Event if required.

9.	 Customer Points Service recalculates the customer's loyalty points based
on this purchase.

10.	 Customer Account Service updates the order history in the customer's
account.

In this approach, each service is responsible for only one function. Services
accept and generate events. Each service is independent and is not aware of its
neighborhood. Hence, the neighborhood can organically grow as mentioned in the
honeycomb analogy. New services can be added as and when necessary. Adding
a new service does not impact any of the existing services.

Demystifying Microservices

[22]

An example of a travel agent portal
This third example is a simple travel agent portal application. In this example, we
will see both synchronous REST calls as well as asynchronous events.

In this case, the portal is just a container application with multiple menu items or
links in the portal. When specific pages are requested—for example, when the menu
or a link is clicked on—they will be loaded from the specific microservices.

When a customer requests a booking, the following events take place internally:

1.	 The travel agent opens the flight UI, searches for a flight, and identifies the
right flight for the customer. Behind the scenes, the flight UI is loaded from
the Flight microservice. The flight UI only interacts with its own backend
APIs within the Flight microservice. In this case, it makes a REST call to the
Flight microservice to load the flights to be displayed.

2.	 The travel agent then queries the customer details by accessing the customer
UI. Similar to the flight UI, the customer UI is loaded from the Customer
microservice. Actions in the customer UI will invoke REST calls on the
Customer microservice. In this case, customer details are loaded by
invoking appropriate APIs on the Customer microservice.

3.	 Then, the travel agent checks the visa details for the customer's eligibility
to travel to the selected country. This also follows the same pattern as
mentioned in the previous two points.

Chapter 1

[23]

4.	 Next, the travel agent makes a booking using the booking UI from the
Booking microservice, which again follows the same pattern.

5.	 The payment pages are loaded from the Payment microservice. In general,
the payment service has additional constraints such as PCIDSS compliance
(protecting and encrypting data in motion and data at rest). The advantage
of the microservices approach is that none of the other microservices need
to be considered under the purview of PCIDSS as opposed to the monolithic
application, where the complete application comes under the governing rules
of PCIDSS. Payment also follows the same pattern as described earlier.

6.	 Once the booking is submitted, the Booking microservice calls the flight
service to validate and update the flight booking. This orchestration is
defined as part of the Booking microservice. Intelligence to make a booking is
also held within the Booking microservice. As part of the booking process, it
also validates, retrieves, and updates the Customer microservice.

7.	 Finally, the Booking microservice sends the Booking Event, which the
Notification service picks up and sends a notification of to the customer.

The interesting factor here is that we can change the user interface, logic, and data
of a microservice without impacting any other microservices.

This is a clean and neat approach. A number of portal applications can be built by
composing different screens from different microservices, especially for different
user communities. The overall behavior and navigation will be controlled by the
portal application.

The approach has a number of challenges unless the pages are designed with this
approach in mind. Note that the site layouts and static content will be loaded by the
Content Management System (CMS) as layout templates. Alternately, this could be
stored in a web server. The site layout may have fragments of UIs that will be loaded
from the microservices at runtime.

Microservices benefits
Microservices offer a number of benefits over the traditional multitier, monolithic
architectures. This section explains some key benefits of the microservices
architecture approach.

Supports polyglot architecture
With microservices, architects and developers can choose fit for purpose
architectures and technologies for each microservice. This gives the flexibility
to design better-fit solutions in a more cost-effective way.

www.allitebooks.com

http://www.allitebooks.org

Demystifying Microservices

[24]

As microservices are autonomous and independent, each service can run with its
own architecture or technology or different versions of technologies.

The following shows a simple, practical example of a polyglot architecture with
microservices.

There is a requirement to audit all system transactions and record transaction details
such as request and response data, the user who initiated the transaction, the service
invoked, and so on.

As shown in the preceding diagram, while core services such as the Order and
Products microservices use a relational data store, the Audit microservice persists
data in Hadoop File System (HDFS). A relational data store is neither ideal nor
cost effective in storing large data volumes such as in the case of audit data. In the
monolithic approach, the application generally uses a shared, single database that
stores Order, Products, and Audit data.

In this example, the audit service is a technical microservice using a different
architecture. Similarly, different functional services could also use different
architectures.

In another example, there could be a Reservation microservice running on Java
7, while a Search microservice could be running on Java 8. Similarly, an Order
microservice could be written on Erlang, whereas a Delivery microservice could be
on the Go language. None of these are possible with a monolithic architecture.

Enabling experimentation and innovation
Modern enterprises are thriving towards quick wins. Microservices are one of the
key enablers for enterprises to do disruptive innovation by offering the ability to
experiment and fail fast.

Chapter 1

[25]

As services are fairly simple and smaller in size, enterprises can afford to experiment
new processes, algorithms, business logics, and so on. With large monolithic
applications, experimentation was not easy; nor was it straightforward or cost
effective. Businesses had to spend huge money to build or change an application
to try out something new. With microservices, it is possible to write a small
microservice to achieve the targeted functionality and plug it into the system in a
reactive style. One can then experiment with the new function for a few months, and
if the new microservice does not work as expected, we can change or replace it with
another one. The cost of change will be considerably less compared to that of the
monolithic approach.

In another example of an airline booking website, the airline wants to show
personalized hotel recommendations in their booking page. The recommendations
must be displayed on the booking confirmation page.

As shown in the preceding diagram, it is convenient to write a microservice that can
be plugged into the monolithic applications booking flow rather than incorporating
this requirement in the monolithic application itself. The airline may choose to start
with a simple recommendation service and keep replacing it with newer versions till
it meets the required accuracy.

Elastically and selectively scalable
As microservices are smaller units of work, they enable us to implement selective
scalability.

Scalability requirements may be different for different functions in an application.
A monolithic application, packaged as a single WAR or an EAR, can only be scaled
as a whole. An I/O-intensive function when streamed with high velocity data could
easily bring down the service levels of the entire application.

Demystifying Microservices

[26]

In the case of microservices, each service could be independently scaled up or
down. As scalability can be selectively applied at each service, the cost of scaling is
comparatively less with the microservices approach.

In practice, there are many different ways available to scale an application and
is largely subject to the architecture and behavior of the application. Scale Cube
defines primarily three approaches to scaling an application:

•	 Scaling the x axis by horizontally cloning the application
•	 Scaling the y axis by splitting different functionality
•	 Scaling the z axis by partitioning or sharding the data

Read more about Scale Cube in the following site:
http://theartofscalability.com/

When y axis scaling is applied to monolithic applications, it breaks the monolithic
to smaller units aligned with business functions. Many organizations successfully
applied this technique to move away from monolithic applications. In principle, the
resulting units of functions are in line with the microservices characteristics.

For instance, in a typical airline website, statistics indicate that the ratio of flight
searching to flight booking could be as high as 500:1. This means one booking
transaction for every 500 search transactions. In this scenario, the search needs
500 times more scalability than the booking function. This is an ideal use case for
selective scaling.

http://theartofscalability.com/

Chapter 1

[27]

The solution is to treat search requests and booking requests differently. With
a monolithic architecture, this is only possible with z scaling in the scale cube.
However, this approach is expensive because in the z scale, the entire code base
is replicated.

In the preceding diagram, Search and Booking are designed as different microservices
so that Search can be scaled differently from Booking. In the diagram, Search has
three instances, and Booking has two instances. Selective scalability is not limited
to the number of instances, as shown in the diagram, but also in the way in which
the microservices are architected. In the case of Search, an in-memory data grid
(IMDG) such as Hazelcast can be used as the data store. This will further increase the
performance and scalability of Search. When a new Search microservice instance is
instantiated, an additional IMDG node is added to the IMDG cluster. Booking does
not require the same level of scalability. In the case of Booking, both instances of the
Booking microservice are connected to the same instance of the database.

Allowing substitution
Microservices are self-contained, independent deployment modules enabling the
substitution of one microservice with another similar microservice.

Many large enterprises follow buy-versus-build policies to implement software
systems. A common scenario is to build most of the functions in house and buy
certain niche capabilities from specialists outside. This poses challenges in traditional
monolithic applications as these application components are highly cohesive.
Attempting to plug in third-party solutions to the monolithic applications results in
complex integrations. With microservices, this is not an afterthought. Architecturally,
a microservice can be easily replaced by another microservice developed either
in-house or even extended by a microservice from a third party.

Demystifying Microservices

[28]

A pricing engine in the airline business is complex. Fares for different routes are
calculated using complex mathematical formulas known as the pricing logic. Airlines
may choose to buy a pricing engine from the market instead of building the product
in house. In the monolithic architecture, Pricing is a function of Fares and Booking. In
most cases Pricing, Fares, and Booking are hardwired, making it almost impossible
to detach.

In a well-designed microservices system, Booking, Fares, and Pricing would
be independent microservices. Replacing the Pricing microservice will have
only a minimal impact on any other services as they are all loosely coupled and
independent. Today, it could be a third-party service; tomorrow, it could be easily
substituted by another third-party or home-grown service.

Enabling to build organic systems
Microservices help us build systems that are organic in nature. This is significantly
important when migrating monolithic systems gradually to microservices.

Organic systems are systems that grow laterally over a period of time by adding
more and more functions to it. In practice, an application grows unimaginably
large in its lifespan, and in most cases, the manageability of the application reduces
dramatically over this same period of time.

Microservices are all about independently manageable services. This enable us to
keep adding more and more services as the need arises with minimal impact on the
existing services. Building such systems does not need huge capital investments.
Hence, businesses can keep building as part of their operational expenditure.

A loyalty system in an airline was built years ago, targeting individual passengers.
Everything was fine until the airline started offering loyalty benefits to their
corporate customers. Corporate customers are individuals grouped under
corporations. As the current systems core data model is flat, targeting individuals,
the corporate environment needs a fundamental change in the core data model,
and hence huge reworking, to incorporate this requirement.

Chapter 1

[29]

As shown in the preceding diagram, in a microservices-based architecture, customer
information would be managed by the Customer microservice and loyalty by the
Loyalty Points microservice.

In this situation, it is easy to add a new Corporate Customer microservice to manage
corporate customers. When a corporation is registered, individual members will
be pushed to the Customer microservice to manage them as usual. The Corporate
Customer microservice provides a corporate view by aggregating data from the
Customer microservice. It will also provide services to support corporate-specific
business rules. With this approach, adding new services will have only a minimal
impact on the existing services.

Helping reducing technology debt
As microservices are smaller in size and have minimal dependencies, they allow the
migration of services that use end-of-life technologies with minimal cost.

Technology changes are one of the barriers in software development. In many
traditional monolithic applications, due to the fast changes in technologies, today's
next-generation applications could easily become legacy even before their release
to production. Architects and developers tend to add a lot of protection against
technology changes by adding layers of abstractions. However, in reality, this
approach does not solve the issue but, instead, results in over-engineered systems.
As technology upgrades are often risky and expensive with no direct returns to
business, the business may not be happy to invest in reducing the technology
debt of the applications.

With microservices, it is possible to change or upgrade technology for each service
individually rather than upgrading an entire application.

Upgrading an application with, for instance, five million lines written on EJB 1.1 and
Hibernate to the Spring, JPA, and REST services is almost similar to rewriting the
entire application. In the microservices world, this could be done incrementally.

Demystifying Microservices

[30]

As shown in the preceding diagram, while older versions of the services are running
on old versions of technologies, new service developments can leverage the latest
technologies. The cost of migrating microservices with end-of-life technologies is
considerably less compared to enhancing monolithic applications.

Allowing the coexistence of different versions
As microservices package the service runtime environment along with the service
itself, this enables having multiple versions of the service to coexist in the same
environment.

There will be situations where we will have to run multiple versions of the same
service at the same time. Zero downtime promote, where one has to gracefully
switch over from one version to another, is one example of a such a scenario as
there will be a time window where both services will have to be up and running
simultaneously. With monolithic applications, this is a complex procedure because
upgrading new services in one node of the cluster is cumbersome as, for instance,
this could lead to class loading issues. A canary release, where a new version is
only released to a few users to validate the new service, is another example where
multiple versions of the services have to coexist.

With microservices, both these scenarios are easily manageable. As each microservice
uses independent environments, including service listeners such as Tomcat or Jetty
embedded, multiple versions can be released and gracefully transitioned without
many issues. When consumers look up services, they look for specific versions of
services. For example, in a canary release, a new user interface is released to user
A. When user A sends a request to the microservice, it looks up the canary release
version, whereas all other users will continue to look up the last production version.

Care needs to be taken at the database level to ensure the database design is always
backward compatible to avoid breaking the changes.

Chapter 1

[31]

As shown in the preceding diagram, version 1 and 2 of the Customer service can
coexist as they are not interfering with each other, given their respective deployment
environments. Routing rules can be set at the gateway to divert traffic to specific
instances, as shown in the diagram. Alternatively, clients can request specific
versions as part of the request itself. In the diagram, the gateway selects the version
based on the region from which the request is originated.

Supporting the building of self-organizing
systems
Microservices help us build self-organizing systems. A self-organizing system
support will automate deployment, be resilient, and exhibit self-healing and self-
learning capabilities.

In a well-architected microservices system, a service is unaware of other services. It
accepts a message from a selected queue and processes it. At the end of the process, it
may send out another message, which triggers other services. This allows us to drop
any service into the ecosystem without analyzing the impact on the overall system.
Based on the input and output, the service will self-organize into the ecosystem. No
additional code changes or service orchestration is required. There is no central brain
to control and coordinate the processes.

Imagine an existing notification service that listens to an INPUT queue and sends
notifications to an SMTP server, as shown in the following figure:

Let's assume, later, a personalization engine, responsible for changing the language
of the message to the customer's native language, needs to be introduced to
personalize messages before sending them to the customer, the personalization
engine is responsible for changing the language of the message to the customer's
native language.

Demystifying Microservices

[32]

With microservices, a new personalization microservice will be created to do this
job. The input queue will be configured as INPUT in an external configuration
server, and the personalization service will pick up the messages from the INPUT
queue (earlier, this was used by the notification service) and send the messages
to the OUTPUT queue after completing process. The notification services input
queue will then send to OUTPUT. From the very next moment onward, the system
automatically adopts this new message flow.

Supporting event-driven architecture
Microservices enable us to develop transparent software systems. Traditional
systems communicate with each other through native protocols and hence behave
like a black box application. Business events and system events, unless published
explicitly, are hard to understand and analyze. Modern applications require data
for business analysis, to understand dynamic system behaviors, and analyze market
trends, and they also need to respond to real-time events. Events are useful
mechanisms for data extraction.

A well-architected microservice always works with events for both input and output.
These events can be tapped by any service. Once extracted, events can be used for
a variety of use cases.

For example, the business wants to see the velocity of orders categorized by product
type in real time. In a monolithic system, we need to think about how to extract these
events. This may impose changes in the system.

In the microservices world, Order Event is already published whenever an order is
created. This means that it is just a matter of adding a new service to subscribe to the
same topic, extract the event, perform the requested aggregations, and push another
event for the dashboard to consume.

Chapter 1

[33]

Enabling DevOps
Microservices are one of the key enablers of DevOps. DevOps is widely adopted
as a practice in many enterprises, primarily to increase the speed of delivery and
agility. A successful adoption of DevOps requires cultural changes, process changes,
as well as architectural changes. DevOps advocates to have agile development,
high-velocity release cycles, automatic testing, automatic infrastructure provisioning,
and automated deployment.

Automating all these processes is extremely hard to achieve with traditional
monolithic applications. Microservices are not the ultimate answer, but microservices
are at the center stage in many DevOps implementations. Many DevOps tools and
techniques are also evolving around the use of microservices.

Consider a monolithic application that takes hours to complete a full build and 20
to 30 minutes to start the application; one can see that this kind of application is not
ideal for DevOps automation. It is hard to automate continuous integration on every
commit. As large, monolithic applications are not automation friendly, continuous
testing and deployments are also hard to achieve.

On the other hand, small footprint microservices are more automation-friendly and
therefore can more easily support these requirements.

Microservices also enable smaller, focused agile teams for development. Teams will
be organized based on the boundaries of microservices.

Relationship with other architecture
styles
Now that we have seen the characteristics and benefits of microservices, in this
section, we will explore the relationship of microservices with other closely related
architecture styles such as SOA and Twelve-Factor Apps.

Relations with SOA
SOA and microservices follow similar concepts. Earlier in this chapter, we discussed
that microservices are evolved from SOA, and many service characteristics are
common in both approaches.

However, are they the same or are they different?

As microservices are evolved from SOA, many characteristics of microservices are
similar to SOA. Let's first examine the definition of SOA.

Demystifying Microservices

[34]

The definition of SOA from The Open Group consortium is as follows:

"Service-Oriented Architecture (SOA) is an architectural style that supports
service orientation. Service orientation is a way of thinking in terms of services
and service-based development and the outcomes of services.

A service:

Is a logical representation of a repeatable business activity that has a specified
outcome (e.g., check customer credit, provide weather data, consolidate drilling
reports)

It is self-contained.

It may be composed of other services.

It is a "black box" to consumers of the service."

We observed similar aspects in microservices as well. So, in what way are
microservices different? The answer is: it depends.

The answer to the previous question could be yes or no, depending upon the
organization and its adoption of SOA. SOA is a broader term, and different
organizations approached SOA differently to solve different organizational
problems. The difference between microservices and SOA is in a way based
on how an organization approaches SOA.

In order to get clarity, a few cases will be examined.

Service-oriented integration
Service-oriented integration refers to a service-based integration approach used by
many organizations.

Chapter 1

[35]

Many organizations would have used SOA primarily to solve their integration
complexities, also known as integration spaghetti. Generally, this is termed as
Service-Oriented Integration (SOI). In such cases, applications communicate
with each other through a common integration layer using standard protocols and
message formats such as SOAP/XML-based web services over HTTP or JMS. These
types of organizations focus on Enterprise Integration Patterns (EIP) to model their
integration requirements. This approach strongly relies on heavyweight ESB such
as TIBCO Business Works, WebSphere ESB, Oracle ESB, and the likes. Most ESB
vendors also packed a set of related products such as rules engines, business process
management engines, and so on as an SOA suite. Such organizations' integrations are
deeply rooted into their products. They either write heavy orchestration logic in the
ESB layer or the business logic itself in the service bus. In both cases, all enterprise
services are deployed and accessed via ESB. These services are managed through an
enterprise governance model. For such organizations, microservices are altogether
different from SOA.

Legacy modernization
SOA is also used to build service layers on top of legacy applications.

Another category of organizations would use SOA in transformation projects or
legacy modernization projects. In such cases, the services are built and deployed
in the ESB layer connecting to backend systems using ESB adapters. For these
organizations, microservices are different from SOA.

Demystifying Microservices

[36]

Service-oriented application
Some organizations adopt SOA at an application level.

In this approach, lightweight integration frameworks, such as Apache Camel or Spring
Integration, are embedded within applications to handle service-related cross-cutting
capabilities such as protocol mediation, parallel execution, orchestration, and service
integration. As some of the lightweight integration frameworks have native Java object
support, such applications would even use native Plain Old Java Objects (POJO)
services for integration and data exchange between services. As a result, all services
have to be packaged as one monolithic web archive. Such organizations could see
microservices as the next logical step of their SOA.

Monolithic migration using SOA

The last possibility is transforming a monolithic application into smaller units
after hitting the breaking point with the monolithic system. They would break the
application into smaller, physically deployable subsystems, similar to the y axis
scaling approach explained earlier, and deploy them as web archives on web servers
or as JARs deployed on some home-grown containers. These subsystems as service
would use web services or other lightweight protocols to exchange data between
services. They would also use SOA and service design principles to achieve this. For
such organizations, they may tend to think that microservices are the same old wine
in a new bottle.

Chapter 1

[37]

Relations with Twelve-Factor apps
Cloud computing is one of the rapidly evolving technologies. Cloud computing
promises many benefits, such as cost advantage, speed, agility, flexibility, and
elasticity. There are many cloud providers offering different services. They lower the
cost models to make it more attractive to the enterprises. Different cloud providers
such as AWS, Microsoft, Rackspace, IBM, Google, and so on use different tools,
technologies, and services. On the other hand, enterprises are aware of this evolving
battlefield and, therefore, they are looking for options for de-risking from lockdown
to a single vendor.

Many organizations do lift and shift their applications to the cloud. In such cases,
the applications may not realize all the benefits promised by cloud platforms. Some
applications need to undergo overhaul, whereas some may need minor tweaking
before moving to cloud. This by and large depends upon how the application is
architected and developed.

For example, if the application has its production database server URLs hardcoded
as part of the applications WAR, it needs to be modified before moving the
application to cloud. In the cloud, the infrastructure is transparent to the application,
and especially, the physical IP addresses cannot be assumed.

How do we ensure that an application, or even microservices, can run seamlessly
across multiple cloud providers and take advantages of cloud services such as
elasticity?

It is important to follow certain principles while developing cloud native applications.

Cloud native is a term used for developing applications that can work
efficiently in a cloud environment, understanding and utilizing cloud
behaviors such as elasticity, utilization based charging, fail aware, and
so on.

Twelve-Factor App, forwarded by Heroku, is a methodology describing the
characteristics expected from modern cloud-ready applications. Twelve-Factor App
is equally applicable for microservices as well. Hence, it is important to understand
Twelve-Factor App.

Demystifying Microservices

[38]

A single code base
The code base principle advises that each application has a single code base. There
can be multiple instances of deployment of the same code base, such as development,
testing, and production. Code is typically managed in a source control system such
as Git, Subversion, and so on.

Extending the same philosophy for microservices, each microservice should have its
own code base, and this code base is not shared with any other microservice. It also
means that one microservice has exactly one code base.

Bundling dependencies
As per this principle, all applications should bundle their dependencies along with
the application bundle. With build tools such as Maven and Gradle, we explicitly
manage dependencies in a pom.xml or the .gradle file and link them using a central
build artifact repository such as Nexus or Archiva. This ensures that the versions
are managed correctly. The final executables will be packaged as a WAR file or an
executable JAR file, embedding all the dependencies.

In the context of microservices, this is one of the fundamental principles to be followed.
Each microservice should bundle all the required dependencies and execution libraries
such as the HTTP listener and so on in the final executable bundle.

Chapter 1

[39]

Externalizing configurations
This principle advises the externalization of all configuration parameters from the
code. An application's configuration parameters vary between environments, such as
support to the e-mail IDs or URL of an external system, username, passwords, queue
name, and so on. These will be different for development, testing, and production.
All service configurations should be externalized.

The same principle is obvious for microservices as well. The microservices
configuration parameters should be loaded from an external source. This will also
help to automate the release and deployment process as the only difference between
these environments is the configuration parameters.

Backing services are addressable
All backing services should be accessible through an addressable URL. All services
need to talk to some external resources during the life cycle of their execution.
For example, they could be listening or sending messages to a messaging system,
sending an e-mail, persisting data to database, and so on. All these services should
be reachable through a URL without complex communication requirements.

Demystifying Microservices

[40]

In the microservices world, microservices either talk to a messaging system to send
or receive messages, or they could accept or send messages to other service APIs. In
a regular case, these are either HTTP endpoints using REST and JSON or TCP- or
HTTP-based messaging endpoints.

Isolation between build, release, and run
This principle advocates a strong isolation between the build, release, and run stages.
The build stage refers to compiling and producing binaries by including all the
assets required. The release stage refers to combining binaries with environment-
specific configuration parameters. The run stage refers to running application on a
specific execution environment. The pipeline is unidirectional, so it is not possible
to propagate changes from the run stages back to the build stage. Essentially, it also
means that it is not recommended to do specific builds for production; rather, it has
to go through the pipeline.

In microservices, the build will create executable JAR files, including the service
runtime such as an HTTP listener. During the release phase, these executables will be
combined with release configurations such as production URLs and so on and create
a release version, most probably as a container similar to Docker. In the run stage,
these containers will be deployed on production via a container scheduler.

Stateless, shared nothing processes
This principle suggests that processes should be stateless and share nothing. If the
application is stateless, then it is fault tolerant and can be scaled out easily.

All microservices should be designed as stateless functions. If there is any
requirement to store a state, it should be done with a backing database or
in an in-memory cache.

Chapter 1

[41]

Exposing services through port bindings
A Twelve-Factor application is expected to be self-contained. Traditionally,
applications are deployed to a server: a web server or an application server such as
Apache Tomcat or JBoss. A Twelve-Factor application does not rely on an external
web server. HTTP listeners such as Tomcat or Jetty have to be embedded in the
service itself.

Port binding is one of the fundamental requirements for microservices to be
autonomous and self-contained. Microservices embed service listeners as a part
of the service itself.

Concurrency to scale out
This principle states that processes should be designed to scale out by replicating the
processes. This is in addition to the use of threads within the process.

In the microservices world, services are designed to scale out rather than scale up.
The x axis scaling technique is primarily used for a scaling service by spinning up
another identical service instance. The services can be elastically scaled or shrunk
based on the traffic flow. Further to this, microservices may make use of parallel
processing and concurrency frameworks to further speed up or scale up the
transaction processing.

Disposability with minimal overhead
This principle advocates building applications with minimal startup and shutdown
times with graceful shutdown support. In an automated deployment environment,
we should be able bring up or bring down instances as quick as possible. If the
application's startup or shutdown takes considerable time, it will have an adverse
effect on automation. The startup time is proportionally related to the size of the
application. In a cloud environment targeting auto-scaling, we should be able to
spin up new instance quickly. This is also applicable when promoting new versions
of services.

In the microservices context, in order to achieve full automation, it is extremely
important to keep the size of the application as thin as possible, with minimal startup
and shutdown time. Microservices also should consider a lazy loading of objects
and data.

Demystifying Microservices

[42]

Development and production parity
This principle states the importance of keeping development and production
environments as identical as possible. For example, let's consider an application with
multiple services or processes, such as a job scheduler service, cache services, and
one or more application services. In a development environment, we tend to run all
of them on a single machine, whereas in production, we will facilitate independent
machines to run each of these processes. This is primarily to manage the cost
of infrastructure. The downside is that if production fails, there is no identical
environment to re-produce and fix the issues.

Not only is this principle valid for microservices, but it is also applicable to any
application development.

Externalizing logs
A Twelve-Factor application never attempts to store or ship log files. In a cloud, it is
better to avoid local I/Os. If the I/Os are not fast enough in a given infrastructure,
it could create a bottleneck. The solution to this is to use a centralized logging
framework. Splunk, Greylog, Logstash, Logplex, and Loggly are some examples
of log shipping and analysis tools. The recommended approach is to ship logs to
a central repository by tapping the logback appenders and write to one of the
shippers' endpoints.

In a microservices ecosystem, this is very important as we are breaking a system
into a number of smaller services, which could result in decentralized logging. If they
store logs in a local storage, it would be extremely difficult to correlate logs between
services.

In development, the microservice may direct the log stream to stdout, whereas in
production, these streams will be captured by the log shippers and sent to a central
log service for storage and analysis.

Chapter 1

[43]

Package admin processes
Apart from application services, most applications provide admin tasks as well. This
principle advises to use the same release bundle as well as an identical environment
for both application services and admin tasks. Admin code should also be packaged
along with the application code.

Not only is this principle valid for microservices, but also it is applicable to any
application development.

Microservice use cases
A microservice is not a silver bullet and will not solve all the architectural challenges
of today's world. There is no hard-and-fast rule or rigid guideline on when to use
microservices.

Microservices may not fit in each and every use case. The success of microservices
largely depends on the selection of use cases. The first and the foremost activity is
to do a litmus test of the use case against the microservices' benefits. The litmus test
must cover all the microservices' benefits we discussed earlier in this chapter. For a
given use case, if there are no quantifiable benefits or the cost outweighs the benefits,
then the use case may not be the right choice for microservices.

Let's discuss some commonly used scenarios that are suitable candidates for a
microservices architecture:

•	 Migrating a monolithic application due to improvements required in
scalability, manageability, agility, or speed of delivery. Another similar
scenario is rewriting an end-of-life heavily used legacy application. In
both cases, microservices present an opportunity. Using a microservices
architecture, it is possible to replatform a legacy application by slowly
transforming functions to microservices. There are benefits in this approach.
There is no humongous upfront investment required, no major disruption
to business, and no severe business risks. As the service dependencies are
known, the microservices dependencies can be well managed.

•	 Utility computing scenarios such as integrating an optimization service,
forecasting service, price calculation service, prediction service, offer service,
recommendation service, and so on are good candidates for microservices.
These are independent stateless computing units that accept certain data,
apply algorithms, and return the results. Independent technical services such
as the communication service, the encryption service, authentication services,
and so on are also good candidates for microservices.

Demystifying Microservices

[44]

•	 In many cases, we can build headless business applications or services that
are autonomous in nature—for instance, the payment service, login service,
flight search service, customer profile service, notification service, and so on.
These are normally reused across multiple channels and, hence, are good
candidates for building them as microservices.

•	 There could be micro or macro applications that serve a single purpose and
performing a single responsibility. A simple time tracking application is an
example of this category. All it does is capture the time, duration, and task
performed. Common-use enterprise applications are also candidates for
microservices.

•	 Backend services of a well-architected, responsive client-side MVC web
application (the Backend as a Service (BaaS) scenario) load data on demand
in response to the user navigation. In most of these scenarios, data could be
coming from multiple logically different data sources as described in the Fly
By Points example mentioned earlier.

•	 Highly agile applications, applications demanding speed of delivery or time
to market, innovation pilots, applications selected for DevOps, applications
of the System of Innovation type, and so on could also be considered as
potential candidates for the microservices architecture.

•	 Applications that we could anticipate getting benefits from microservices
such as polyglot requirements, applications that require Command Query
Responsibility segregations (CQRS), and so on are also potential candidates
of the microservices architecture.

If the use case falls into any of these categories, it is a potential candidate for the
microservices architecture.

There are few scenarios in which we should consider avoiding microservices:

•	 If the organization's policies are forced to use centrally managed
heavyweight components such as ESB to host a business logic or if the
organization has any other policies that hinder the fundamental principles
of microservices, then microservices are not the right solution unless the
organizational process is relaxed.

•	 If the organization's culture, processes, and so on are based on the
traditional waterfall delivery model, lengthy release cycles, matrix teams,
manual deployments and cumbersome release processes, no infrastructure
provisioning, and so on, then microservices may not be the right fit. This
is underpinned by Conway's Law. This states that there is a strong link
between the organizational structure and software it creates.

Chapter 1

[45]

Read more about the Conway's Law at:
http://www.melconway.com/Home/Conways_Law.html

Microservices early adopters
Many organizations have already successfully embarked on their journey to the
microservices world. In this section, we will examine some of the frontrunners on the
microservices space to analyze why they did what they did and how they did it. We
will conduct some analysis at the end to draw some conclusions:

•	 Netflix (www.netflix.com): Netflix, an international on-demand media
streaming company, is a pioneer in the microservices space. Netflix
transformed their large pool of developers developing traditional monolithic
code to smaller development teams producing microservices. These
microservices work together to stream digital media to millions of Netflix
customers. At Netflix, engineers started with monolithic, went through
the pain, and then broke the application into smaller units that are loosely
coupled and aligned to the business capability.

•	 Uber (www.uber.com): Uber, an international transportation network
company, began in 2008 with a monolithic architecture with a single code
base. All services were embedded into the monolithic application. When
Uber expanded their business from one city to multiple cities, the challenges
started. Uber then moved to SOA-based architecture by breaking the system
into smaller independent units. Each module was given to different teams and
empowered them to choose their language, framework, and database. Uber
has many microservices deployed in their ecosystem using RPC and REST.

•	 Airbnb (www.airbnb.com): Airbnb, a world leader providing a trusted
marketplace for accommodation, started with a monolithic application that
performed all the required functions of the business. Airbnb faced scalability
issues with increased traffic. A single code base became too complicated to
manage, resulted in a poor separation of concerns, and ran into performance
issues. Airbnb broke their monolithic application into smaller pieces with
separate code bases running on separate machines with separate deployment
cycles. Airbnb developed their own microservices or SOA ecosystem around
these services.

http://www.melconway.com/Home/Conways_Law.html
www.netflix.com
www.uber.com
www.airbnb.com

Demystifying Microservices

[46]

•	 Orbitz (www.orbitz.com): Orbitz, an online travel portal, started with a
monolithic architecture in the 2000s with a web layer, a business layer, and a
database layer. As Orbitz expanded their business, they faced manageability
and scalability issues with monolithic-tiered architecture. Orbitz then went
through continuous architecture changes. Later, Orbitz broke down their
monolithic to many smaller applications.

•	 eBay (www.ebay.com): eBay, one of the largest online retailers, started
in the late 1990s with a monolithic Perl application and FreeBSD as the
database. eBay went through scaling issues as the business grew. It was
consistently investing in improving its architecture. In the mid 2000s, eBay
moved to smaller decomposed systems based on Java and web services.
They employed database partitions and functional segregation to meet the
required scalability.

•	 Amazon (www.amazon.com): Amazon, one of the largest online retailer
websites, was run on a big monolithic application written on C++
in 2001. The well-architected monolithic application was based on a
tiered architecture with many modular components. However, all these
components were tightly coupled. As a result, Amazon was not able to speed
up their development cycle by splitting teams into smaller groups. Amazon
then separated out the code as independent functional services, wrapped
with web services, and eventually advanced to microservices.

•	 Gilt (www.gilt.com): Gilt, an online shopping website, began in 2007 with
a tiered monolithic Rails application and a Postgres database at the back.
Similarly to many other applications, as traffic volumes increased, the web
application was not able to provide the required resiliency. Gilt went through
an architecture overhaul by introducing Java and polyglot persistence. Later,
Gilt moved to many smaller applications using the microservices concept.

•	 Twitter (www.twitter.com): Twitter, one of the largest social websites,
began with a three-tiered monolithic rails application in the mid 2000s. Later,
when Twitter experienced growth in its user base, they went through an
architecture-refactoring cycle. With this refactoring, Twitter moved away
from a typical web application to an API-based even driven core. Twitter
uses Scala and Java to develop microservices with polyglot persistence.

•	 Nike (www.nike.com): Nike, the world leader in apparel and footwear,
transformed their monolithic applications to microservices. Similarly to many
other organizations, Nike too was run with age-old legacy applications that
were hardly stable. In their journey, Nike moved to heavyweight commercial
products with an objective to stabilize legacy applications but ended up in
monolithic applications that were expensive to scale, had long release cycles,
and needed too much manual work to deploy and manage applications.
Later, Nike moved to a microservices-based architecture that brought down
the development cycle considerably.

www.orbitz.com
www.ebay.com
www.amazon.com
www.gilt.com
www.twitter.com
www.nike.com

Chapter 1

[47]

The common theme is monolithic migrations
When we analyze the preceding enterprises, there is one common theme. All these
enterprises started with monolithic applications and transitioned to a microservices
architecture by applying learning and pain points from their previous editions.

Even today, many start-ups begin with monolith as it is easy to start, conceptualize,
and then slowly move to microservices when the demand arises. Monolithic to
microservices migration scenarios have an added advantage: they have all the
information upfront, readily available for refactoring.

Though, for all these enterprises, it is monolithic transformation, the catalysts were
different for different organizations. Some of the common motivations are a lack
of scalability, long development cycles, process automation, manageability, and
changes in the business models.

While monolithic migrations are no-brainers, there are opportunities to build
microservices from the ground up. More than building ground-up systems, look
for opportunities to build smaller services that are quick wins for business—for
example, adding a trucking service to an airline's end-to-end cargo management
system or adding a customer scoring service to a retailer's loyalty system. These
could be implemented as independent microservices exchanging messages with
their respective monolithic applications.

Another point is that many organizations use microservices only for their business-
critical customer engagement applications, leaving the rest of the legacy monolithic
applications to take their own trajectory.

Another important observation is that most of the organizations examined
previously are at different levels of maturity in their microservices journey. When
eBay transitioned from a monolithic application in the early 2000s, they functionally
split the application into smaller, independent, and deployable units. These logically
divided units are wrapped with web services. While single responsibility and
autonomy are their underpinning principles, the architectures are limited to the
technologies and tools available at that point in time. Organizations such as Netflix
and Airbnb built capabilities of their own to solve the specific challenges they faced.
To summarize, all of these are not truly microservices, but are small, business-
aligned services following the same characteristics.

There is no state called "definite or ultimate microservices". It is a journey and is
evolving and maturing day by day. The mantra for architects and developers is the
replaceability principle; build an architecture that maximizes the ability to replace its
parts and minimizes the cost of replacing its parts. The bottom line is that enterprises
shouldn't attempt to develop microservices by just following the hype.

Demystifying Microservices

[48]

Summary
In this chapter, you learned about the fundamentals of microservices with the help of
a few examples.

We explored the evolution of microservices from traditional monolithic applications.
We examined some of the principles and the mind shift required for modern
application architectures. We also took a look at the characteristics and benefits
of microservices and use cases. In this chapter, we established the microservices'
relationship with service-oriented architecture and Twelve-Factor Apps. Lastly, we
analyzed examples of a few enterprises from different industries.

We will develop a few sample microservices in the next chapter to bring more clarity
to our learnings in this chapter.

[49]

Building Microservices with
Spring Boot

Developing microservices is not so tedious anymore thanks to the powerful
Spring Boot framework. Spring Boot is a framework to develop production-ready
microservices in Java.

This chapter will move from the microservices theory explained in the previous
chapter to hands-on practice by reviewing code samples. This chapter will introduce
the Spring Boot framework and explain how Spring Boot can help build RESTful
microservices in line with the principles and characteristics discussed in the previous
chapter. Finally, some of the features offered by Spring Boot to make microservices
production-ready will be reviewed.

By the end of this chapter, you will have learned about:

•	 Setting up the latest Spring development environment
•	 Developing RESTful services using the Spring framework
•	 Using Spring Boot to build fully qualified microservices
•	 Useful Spring Boot features to build production-ready microservices

Setting up a development environment
To crystalize microservices concepts, a couple of microservices will be built. For this,
it is assumed that the following components are installed:

•	 JDK 1.8: http://www.oracle.com/technetwork/java/javase/
downloads/jdk8-downloads-2133151.html

•	 Spring Tool Suite 3.7.2 (STS): https://spring.io/tools/sts/all
•	 Maven 3.3.1: https://maven.apache.org/download.cgi

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://spring.io/tools/sts/all
https://maven.apache.org/download.cgi

Building Microservices with Spring Boot

[50]

Alternately, other IDEs such as IntelliJ IDEA, NetBeans, or Eclipse could be used.
Similarly, alternate build tools such as Gradle can be used. It is assumed that the
Maven repository, class path, and other path variables are set properly to run STS
and Maven projects.

This chapter is based on the following versions of Spring libraries:

•	 Spring Framework 4.2.6.RELEASE
•	 Spring Boot 1.3.5.RELEASE

Detailed steps to download the code bundle are mentioned in the
Preface of this book. Have a look.
The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Spring-
Microservices. We also have other code bundles from our rich
catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

Developing a RESTful service – the
legacy approach
This example will review the traditional RESTful service development before
jumping deep into Spring Boot.

STS will be used to develop this REST/JSON service.

The full source code of this example is available as the
legacyrest project in the code files of this book.

https://github.com/PacktPublishing/Spring-Microservices
https://github.com/PacktPublishing/Spring-Microservices
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Chapter 2

[51]

The following are the steps to develop the first RESTful service:

1.	 Start STS and set a workspace of choice for this project.
2.	 Navigate to File | New | Project.
3.	 Select Spring Legacy Project as shown in the following screenshot and click

on Next:

Building Microservices with Spring Boot

[52]

4.	 Select Spring MVC Project as shown in the following diagram and click
on Next:

5.	 Select a top-level package name of choice. This example uses org.rvslab.
chapter2.legacyrest as the top-level package.

6.	 Then, click on Finish.
7.	 This will create a project in the STS workspace with the name legacyrest.

Before proceeding further, pom.xml needs editing.

Chapter 2

[53]

8.	 Change the Spring version to 4.2.6.RELEASE, as follows:
<org.springframework-version>4.2.6.RELEASE</org.springframework-
version>

9.	 Add Jackson dependencies in the pom.xml file for JSON-to-POJO and
POJO-to-JSON conversions. Note that the 2.*.* version is used to ensure
compatibility with Spring 4.
<dependency>
 <groupId>com.fasterxml.jackson.core</groupId>
 <artifactId>jackson-databind</artifactId>
 <version>2.6.4</version>
</dependency>

10.	 Some Java code needs to be added. In Java Resources, under legacyrest,
expand the package and open the default HomeController.java file:

11.	 The default implementation is targeted more towards the MVC project.
Rewriting HomeController.java to return a JSON value in response to the
REST call will do the trick. The resulting HomeController.java file will look
similar to the following:
@RestController
public class HomeController {
 @RequestMapping("/")
 public Greet sayHello(){
 return new Greet("Hello World!");
 }
}

Building Microservices with Spring Boot

[54]

class Greet {
 private String message;
 public Greet(String message) {
 this.message = message;
 }
 //add getter and setter
}

Examining the code, there are now two classes:
°° Greet: This is a simple Java class with getters and setters to represent

a data object. There is only one attribute in the Greet class, which is
message.

°° HomeController.java: This is nothing but a Spring controller REST
endpoint to handle HTTP requests.

Note that the annotation used in HomeController is @RestController,
which automatically injects @Controller and @ResponseBody and has the
same effect as the following code:

@Controller
@ResponseBody
public class HomeController { }

12.	 The project can now be run by right-clicking on legacyrest, navigating to
Run As | Run On Server, and then selecting the default server (Pivotal tc
Server Developer Edition v3.1) that comes along with STS.
This should automatically start the server and deploy the web application on
the TC server.
If the server started properly, the following message will appear in the
console:

INFO : org.springframework.web.servlet.DispatcherServlet -
FrameworkServlet 'appServlet': initialization completed in 906 ms

May 08, 2016 8:22:48 PM org.apache.catalina.startup.Catalina start

INFO: Server startup in 2289 ms

Chapter 2

[55]

13.	 If everything is fine, STS will open a browser window to http://
localhost:8080/legacyrest/ and display the JSON object as shown in
the browser. Right-click on and navigate to legacyrest | Properties | Web
Project Settings and review Context Root to identify the context root of the
web application:

The alternate build option is to use Maven. Right-click on the project and navigate
to Run As | Maven install. This will generate chapter2-1.0.0-BUILD-SNAPSHOT.
war under the target folder. This war is deployable in any servlet container such as
Tomcat, JBoss, and so on.

Moving from traditional web applications
to microservices
Carefully examining the preceding RESTful service will reveal whether this really
constitutes a microservice. At first glance, the preceding RESTful service is a fully
qualified interoperable REST/JSON service. However, it is not fully autonomous
in nature. This is primarily because the service relies on an underlying application
server or web container. In the preceding example, a war was explicitly created and
deployed on a Tomcat server.

This is a traditional approach to developing RESTful services as a web application.
However, from the microservices point of view, one needs a mechanism to develop
services as executables, self-contained JAR files with an embedded HTTP listener.

Spring Boot is a tool that allows easy development of such kinds of services.
Dropwizard and WildFly Swarm are alternate server-less RESTful stacks.

Building Microservices with Spring Boot

[56]

Using Spring Boot to build RESTful
microservices
Spring Boot is a utility framework from the Spring team to bootstrap Spring-
based applications and microservices quickly and easily. The framework uses an
opinionated approach over configurations for decision making, thereby reducing the
effort required in writing a lot of boilerplate code and configurations. Using the 80-20
principle, developers should be able to kickstart a variety of Spring applications with
many default values. Spring Boot further presents opportunities for the developers
to customize applications by overriding the autoconfigured values.

Spring Boot not only increases the speed of development but also provides a set
of production-ready ops features such as health checks and metrics collection. As
Spring Boot masks many configuration parameters and abstracts many lower-level
implementations, it minimizes the chance of error to a certain extent. Spring Boot
recognizes the nature of the application based on the libraries available in the class
path and runs the autoconfiguration classes packaged in these libraries.

Often, many developers mistakenly see Spring Boot as a code generator, but in
reality, it is not. Spring Boot only autoconfigures build files—for example, POM files
in the case of Maven. It also sets properties, such as data source properties, based on
certain opinionated defaults. Take a look at the following code:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>
<dependency>
 <groupId>org.hsqldb</groupId>
 <artifactId>hsqldb</artifactId>
 <scope>runtime</scope>
</dependency>

For instance, in the preceding case, Spring Boot understands that the project is set to
use the Spring Data JPA and HSQL databases. It automatically configures the driver
class and other connection parameters.

One of the great outcomes of Spring Boot is that it almost eliminates the need to have
traditional XML configurations. Spring Boot also enables microservices' development
by packaging all the required runtime dependencies in a fat executable JAR file.

Chapter 2

[57]

Getting started with Spring Boot
There are different ways that Spring Boot-based application development can be
started:

•	 Using the Spring Boot CLI as a command-line tool
•	 Using IDEs such as STS to provide Spring Boot, which are supported out of

the box
•	 Using the Spring Initializr project at http://start.spring.io

All these three options will be explored in this chapter, developing a variety of
sample services.

Developing the Spring Boot microservice
using the CLI
The easiest way to develop and demonstrate Spring Boot's capabilities is using the
Spring Boot CLI, a command-line tool. Perform the following steps:

1.	 Install the Spring Boot command-line tool by downloading the spring-
boot-cli-1.3.5.RELEASE-bin.zip file from http://repo.spring.io/
release/org/springframework/boot/spring-boot-cli/1.3.5.RELEASE/
spring-boot-cli-1.3.5.RELEASE-bin.zip.

2.	 Unzip the file into a directory of your choice. Open a terminal window and
change the terminal prompt to the bin folder.
Ensure that the bin folder is added to the system path so that Spring Boot
can be run from any location.

3.	 Verify the installation with the following command. If successful, the Spring
CLI version will be printed in the console:
$spring –-version

Spring CLI v1.3.5.RELEASE

http://start.spring.io
http://repo.spring.io/release/org/springframework/boot/spring-boot-cli/1.3.5.RELEASE/spring-boot-cli-1.3.5.RELEASE-bin.zip
http://repo.spring.io/release/org/springframework/boot/spring-boot-cli/1.3.5.RELEASE/spring-boot-cli-1.3.5.RELEASE-bin.zip
http://repo.spring.io/release/org/springframework/boot/spring-boot-cli/1.3.5.RELEASE/spring-boot-cli-1.3.5.RELEASE-bin.zip

Building Microservices with Spring Boot

[58]

4.	 As the next step, a quick REST service will be developed in Groovy, which
is supported out of the box in Spring Boot. To do so, copy and paste the
following code using any editor of choice and save it as myfirstapp.groovy
in any folder:
@RestController
class HelloworldController {
 @RequestMapping("/")
 String sayHello() {
 "Hello World!"
 }
}

5.	 In order to run this Groovy application, go to the folder where myfirstapp.
groovy is saved and execute the following command. The last few lines of
the server start-up log will be similar to the following:
$spring run myfirstapp.groovy

2016-05-09 18:13:55.351 INFO 35861 --- [nio-8080-exec-1]
o.s.web.servlet.DispatcherServlet : FrameworkServlet
'dispatcherServlet': initialization started

2016-05-09 18:13:55.375 INFO 35861 --- [nio-8080-exec-1]
o.s.web.servlet.DispatcherServlet : FrameworkServlet
'dispatcherServlet': initialization completed in 24 ms

6.	 Open a browser window and go to http://localhost:8080; the browser
will display the following message:

Hello World!

There is no war file created, and no Tomcat server was run. Spring Boot
automatically picked up Tomcat as the webserver and embedded it into the
application. This is a very basic, minimal microservice. The @RestController
annotation, used in the previous code, will be examined in detail in the next example.

Developing the Spring Boot Java
microservice using STS
In this section, developing another Java-based REST/JSON Spring Boot service using
STS will be demonstrated.

Chapter 2

[59]

The full source code of this example is available as the
chapter2.bootrest project in the code files of this book.

1.	 Open STS, right-click within the Project Explorer window, navigate to
New | Project, and select Spring Starter Project, as shown in the following
screenshot, and click on Next:

Spring Starter Project is a basic template wizard that provides a number of
other starter libraries to select from.

2.	 Type the project name as chapter2.bootrest or any other name of your
choice. It is important to choose the packaging as JAR. In traditional web
applications, a war file is created and then deployed to a servlet container,
whereas Spring Boot packages all the dependencies to a self-contained,
autonomous JAR file with an embedded HTTP listener.

Building Microservices with Spring Boot

[60]

3.	 Select 1.8 under Java Version. Java 1.8 is recommended for Spring 4
applications. Change the other Maven properties such as Group, Artifact,
and Package, as shown in the following screenshot:

4.	 Once completed, click on Next.

Chapter 2

[61]

5.	 The wizard will show the library options. In this case, as the REST service is
developed, select Web under Web. This is an interesting step that tells Spring
Boot that a Spring MVC web application is being developed so that Spring
Boot can include the necessary libraries, including Tomcat as the HTTP
listener and other configurations, as required:

Building Microservices with Spring Boot

[62]

6.	 Click on Finish.
This will generate a project named chapter2.bootrest in Project Explorer
in STS:

7.	 Take a moment to examine the generated application. Files that are of
interest are:

°° pom.xml

°° Application.java

°° Application.properties

°° ApplicationTests.java

Examining the POM file
The parent element is one of the interesting aspects in the pom.xml file. Take a look at
the following:

<parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.3.4.RELEASE</version>
</parent>

Chapter 2

[63]

The spring-boot-starter-parent pattern is a bill of materials (BOM), a pattern
used by Maven's dependency management. BOM is a special kind of POM file used
to manage different library versions required for a project. The advantage of using
the spring-boot-starter-parent POM file is that developers need not worry about
finding the right compatible versions of different libraries such as Spring, Jersey, JUnit,
Logback, Hibernate, Jackson, and so on. For instance, in our first legacy example,
a specific version of the Jackson library was added to work with Spring 4. In this
example, these are taken care of by the spring-boot-starter-parent pattern.

The starter POM file has a list of Boot dependencies, sensible resource filtering, and
sensible plug-in configurations required for the Maven builds.

Refer to https://github.com/spring-projects/
spring-boot/blob/1.3.x/spring-boot-
dependencies/pom.xml to take a look at the different
dependencies provided in the starter parent (version 1.3.x).
All these dependencies can be overridden if required.

The starter POM file itself does not add JAR dependencies to the project. Instead,
it will only add library versions. Subsequently, when dependencies are added to
the POM file, they refer to the library versions from this POM file. A snapshot of
some of the properties are as shown as follows:

<spring-boot.version>1.3.5.BUILD-SNAPSHOT</spring-boot.version>
<hibernate.version>4.3.11.Final</hibernate.version>
<jackson.version>2.6.6</jackson.version>
<jersey.version>2.22.2</jersey.version>
<logback.version>1.1.7</logback.version>
<spring.version>4.2.6.RELEASE</spring.version>
<spring-data-releasetrain.version>Gosling-SR4</spring-data-
releasetrain.version>
<tomcat.version>8.0.33</tomcat.version>

Reviewing the dependency section, one can see that this is a clean and neat POM file
with only two dependencies, as follows:

<dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>

https://github.com/spring-projects/spring-boot/blob/1.3.x/spring-boot-dependencies/pom.xml
https://github.com/spring-projects/spring-boot/blob/1.3.x/spring-boot-dependencies/pom.xml
https://github.com/spring-projects/spring-boot/blob/1.3.x/spring-boot-dependencies/pom.xml

Building Microservices with Spring Boot

[64]

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
</dependencies>

As web is selected, spring-boot-starter-web adds all dependencies required for
a Spring MVC project. It also includes dependencies to Tomcat as an embedded
HTTP listener. This provides an effective way to get all the dependencies required as
a single bundle. Individual dependencies could be replaced with other libraries, for
example replacing Tomcat with Jetty.

Similar to web, Spring Boot comes up with a number of spring-boot-starter-*
libraries, such as amqp, aop, batch, data-jpa, thymeleaf, and so on.

The last thing to be reviewed in the pom.xml file is the Java 8 property. By default,
the parent POM file adds Java 6. It is recommended to override the Java version to 8
for Spring:

<java.version>1.8</java.version>

Examining Application.java
Spring Boot, by default, generated a org.rvslab.chapter2.Application.java
class under src/main/java to bootstrap, as follows:

@SpringBootApplication
public class Application {
 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }
}

There is only a main method in Application, which will be invoked at startup as
per the Java convention. The main method bootstraps the Spring Boot application by
calling the run method on SpringApplication. Application.class is passed as a
parameter to tell Spring Boot that this is the primary component.

Chapter 2

[65]

More importantly, the magic is done by the @SpringBootApplication annotation.
The @SpringBootApplication annotation is a top-level annotation that encapsulates
three other annotations, as shown in the following code snippet:

@Configuration
@EnableAutoConfiguration
@ComponentScan
public class Application {

The @Configuration annotation hints that the contained class declares one or
more @Bean definitions. The @Configuration annotation is meta-annotated with
@Component; therefore, it is a candidate for component scanning.

The @EnableAutoConfiguration annotation tells Spring Boot to automatically
configure the Spring application based on the dependencies available in the class path.

Examining application.properties
A default application.properties file is placed under src/main/resources.
It is an important file to configure any required properties for the Spring Boot
application. At the moment, this file is kept empty and will be revisited with some
test cases later in this chapter.

Examining ApplicationTests.java
The last file to be examined is ApplicationTests.java under src/test/java.
This is a placeholder to write test cases against the Spring Boot application.

To implement the first RESTful service, add a REST endpoint, as follows:

1.	 One can edit Application.java under src/main/java and add a RESTful
service implementation. The RESTful service is exactly the same as what was
done in the previous project. Append the following code at the end of the
Application.java file:
@RestController
class GreetingController{
 @RequestMapping("/")
 Greet greet(){
 return new Greet("Hello World!");
 }

Building Microservices with Spring Boot

[66]

}
class Greet {
 private String message;
public Greet() {}

 public Greet(String message) {
 this.message = message;
 }
//add getter and setter
}

2.	 To run, navigate to Run As | Spring Boot App. Tomcat will be started on the
8080 port:

We can notice from the log that:

°° Spring Boot get its own process ID (in this case, it is 41130)
°° Spring Boot is automatically started with the Tomcat server at the

localhost, port 8080.

3.	 Next, open a browser and point to http://localhost:8080. This will show
the JSON response as shown in the following screenshot:

A key difference between the legacy service and this one is that the Spring Boot
service is self-contained. To make this clearer, run the Spring Boot application
outside STS. Open a terminal window, go to the project folder, and run Maven,
as follows:

$ maven install

Chapter 2

[67]

This will generate a fat JAR file under the target folder of the project. Running the
application from the command line shows:

$java -jar target/bootrest-0.0.1-SNAPSHOT.jar

As one can see, bootrest-0.0.1-SNAPSHOT.jar is self-contained and could be run
as a standalone application. At this point, the JAR is as thin as 13 MB. Even though
the application is no more than just "Hello World", the Spring Boot service just
developed, practically follows the principles of microservices.

Testing the Spring Boot microservice
There are multiple ways to test REST/JSON Spring Boot microservices. The easiest
way is to use a web browser or a curl command pointing to the URL, as follows:

curl http://localhost:8080

There are number of tools available to test RESTful services, such as Postman,
Advanced REST client, SOAP UI, Paw, and so on.

In this example, to test the service, the default test class generated by Spring Boot
will be used.

Adding a new test case to ApplicatonTests.java results in:

@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(classes = Application.class)
@WebIntegrationTest
public class ApplicationTests {
 @Test
 public void testVanillaService() {
 RestTemplate restTemplate = new RestTemplate();
 Greet greet = restTemplate.getForObject
 ("http://localhost:8080", Greet.class);
 Assert.assertEquals("Hello World!", greet.getMessage());
 }
}

Note that @WebIntegrationTest is added and @WebAppConfiguration removed
at the class level. The @WebIntegrationTest annotation is a handy annotation that
ensures that the tests are fired against a fully up-and-running server. Alternately,
a combination of @WebAppConfiguration and @IntegrationTest will give the
same result.

Building Microservices with Spring Boot

[68]

Also note that RestTemplate is used to call the RESTful service. RestTemplate is a
utility class that abstracts the lower-level details of the HTTP client.

To test this, one can open a terminal window, go to the project folder, and run
mvn install.

Developing the Spring Boot microservice
using Spring Initializr – the HATEOAS
example
In the next example, Spring Initializr will be used to create a Spring Boot project.
Spring Initializr is a drop-in replacement for the STS project wizard and provides
a web UI to configure and generate a Spring Boot project. One of the advantages of
Spring Initializr is that it can generate a project through the website that then can be
imported into any IDE.

In this example, the concept of HATEOAS (short for Hypertext As The Engine Of
Application State) for REST-based services and the HAL (Hypertext Application
Language) browser will be examined.

HATEOAS is a REST service pattern in which navigation links are provided as part
of the payload metadata. The client application determines the state and follows the
transition URLs provided as part of the state. This methodology is particularly useful
in responsive mobile and web applications in which the client downloads additional
data based on user navigation patterns.

The HAL browser is a handy API browser for hal+json data. HAL is a format based
on JSON that establishes conventions to represent hyperlinks between resources.
HAL helps APIs be more explorable and discoverable.

The full source code of this example is available as the
chapter2.boothateoas project in the code files of this book.

Chapter 2

[69]

Here are the concrete steps to develop a HATEOAS sample using Spring Initilizr:

1.	 In order to use Spring Initilizr, go to https://start.spring.io:

2.	 Fill the details, such as whether it is a Maven project, Spring Boot version,
group, and artifact ID, as shown earlier, and click on Switch to the full
version link under the Generate Project button. Select Web, HATEOAS,
and Rest Repositories HAL Browser. Make sure that the Java version is 8
and the package type is selected as JAR:

https://start.spring.io

Building Microservices with Spring Boot

[70]

3.	 Once selected, hit the Generate Project button. This will generate a Maven
project and download the project as a ZIP file into the download directory of
the browser.

4.	 Unzip the file and save it to a directory of your choice.
5.	 Open STS, go to the File menu and click on Import:

6.	 Navigate to Maven | Existing Maven Projects and click on Next.
7.	 Click on Browse next to Root Directory and select the unzipped folder.

Click on Finish. This will load the generated Maven project into STS'
Project Explorer.

Chapter 2

[71]

8.	 Edit the Application.java file to add a new REST endpoint, as follows:
@RequestMapping("/greeting")
@ResponseBody
public HttpEntity<Greet> greeting(@RequestParam(value = "name",
required = false, defaultValue = "HATEOAS") String name) {
 Greet greet = new Greet("Hello " + name);
 greet.add(linkTo(methodOn(GreetingController.
 class).greeting(name)).withSelfRel());

 return new ResponseEntity<Greet>(greet,
 HttpStatus.OK);
}

9.	 Note that this is the same GreetingController class as in the previous
example. However, a method was added this time named greeting. In
this new method, an additional optional request parameter is defined and
defaulted to HATEOAS. The following code adds a link to the resulting JSON
code. In this case, it adds the link to the same API:
greet.add(linkTo(methodOn(GreetingController.class).
greeting(name)).withSelfRel());

In order to do this, we need to extend the Greet class from
ResourceSupport, as shown here. The rest of the code remains the same:

class Greet extends ResourceSupport{

10.	 The add method is a method in ResourceSupport. The linkTo and
methodOn methods are static methods of ControllerLinkBuilder, a utility
class for creating links on controller classes. The methodOn method will do
a dummy method invocation, and linkTo will create a link to the controller
class. In this case, we will use withSelfRel to point it to itself.

11.	 This will essentially produce a link, /greeting?name=HATEOAS, by default.
A client can read the link and initiate another call.

12.	 Run this as a Spring Boot app. Once the server startup is complete, point the
browser to http://localhost:8080.

Building Microservices with Spring Boot

[72]

13.	 This will open the HAL browser window. In the Explorer field,
type /greeting?name=World! and click on the Go button. If everything
is fine, the HAL browser will show the response details as shown in the
following screenshot:

As shown in the screenshot, the Response Body section has the result with a link
with href pointing back to the same service. This is because we pointed the reference
to itself. Also, review the Links section. The little green box against self is the
navigable link.

It does not make much sense in this simple example, but this could be handy in
larger applications with many related entities. Using the links provided, the client
can easily navigate back and forth between these entities with ease.

What's next?
A number of basic Spring Boot examples have been reviewed so far. The rest of this
chapter will examine some of the Spring Boot features that are important from a
microservices development perspective. In the upcoming sections, we will take a
look at how to work with dynamically configurable properties, change the default
embedded web server, add security to the microservices, and implement cross-origin
behavior when dealing with microservices.

The full source code of this example is available as the
chapter2.boot-advanced project in the code files of this book.

Chapter 2

[73]

The Spring Boot configuration
In this section, the focus will be on the configuration aspects of Spring Boot. The
chapter2.bootrest project, already developed, will be modified in this section
to showcase configuration capabilities. Copy and paste chapter2.bootrest and
rename the project as chapter2.boot-advanced.

Understanding the Spring Boot
autoconfiguration
Spring Boot uses convention over configuration by scanning the dependent
libraries available in the class path. For each spring-boot-starter-* dependency
in the POM file, Spring Boot executes a default AutoConfiguration class.
AutoConfiguration classes use the *AutoConfiguration lexical pattern, where *
represents the library. For example, the autoconfiguration of JPA repositories is done
through JpaRepositoriesAutoConfiguration.

Run the application with --debug to see the autoconfiguration report. The following
command shows the autoconfiguration report for the chapter2.boot-advanced
project:

$java -jar target/bootadvanced-0.0.1-SNAPSHOT.jar --debug

Here are some examples of the autoconfiguration classes:

•	 ServerPropertiesAutoConfiguration

•	 RepositoryRestMvcAutoConfiguration

•	 JpaRepositoriesAutoConfiguration

•	 JmsAutoConfiguration

It is possible to exclude the autoconfiguration of certain libraries if the application
has special requirements and you want to get full control of the configurations.
The following is an example of excluding DataSourceAutoConfiguration:

@EnableAutoConfiguration(exclude={DataSourceAutoConfiguration.class})

www.allitebooks.com

http://www.allitebooks.org

Building Microservices with Spring Boot

[74]

Overriding default configuration values
It is also possible to override default configuration values using the application.
properties file. STS provides an easy-to-autocomplete, contextual help on
application.properties, as shown in the following screenshot:

In the preceding screenshot, server.port is edited to be set as 9090. Running this
application again will start the server on port 9090.

Changing the location of the configuration file
In order to align with the Twelve-Factor app, configuration parameters need to
be externalized from the code. Spring Boot externalizes all configurations into
application.properties. However, it is still part of the application's build.
Furthermore, properties can be read from outside the package by setting the
following properties:

spring.config.name= # config file name
spring.config.location= # location of config file

Here, spring.config.location could be a local file location.

The following command starts the Spring Boot application with an externally
provided configuration file:

$java -jar target/bootadvanced-0.0.1-SNAPSHOT.jar --spring.config.
name=bootrest.properties

Chapter 2

[75]

Reading custom properties
At startup, SpringApplication loads all the properties and adds them to the Spring
Environment class. Add a custom property to the application.properties file.
In this case, the custom property is named bootrest.customproperty. Autowire
the Spring Environment class into the GreetingController class. Edit the
GreetingController class to read the custom property from Environment
and add a log statement to print the custom property to the console.

Perform the following steps to do this:

1.	 Add the following property to the application.properties file:
bootrest.customproperty=hello

2.	 Then, edit the GreetingController class as follows:
@Autowired
Environment env;

Greet greet(){
 logger.info("bootrest.customproperty "+
 env.getProperty("bootrest.customproperty"));
 return new Greet("Hello World!");
}

3.	 Rerun the application. The log statement prints the custom variable in the
console, as follows:
org.rvslab.chapter2.GreetingController : bootrest.customproperty
hello

Using a .yaml file for configuration
As an alternate to application.properties, one may use a .yaml file. YAML
provides a JSON-like structured configuration compared to the flat properties file.

To see this in action, simply replace application.properties with application.
yaml and add the following property:

server
 port: 9080

Rerun the application to see the port printed in the console.

Building Microservices with Spring Boot

[76]

Using multiple configuration profiles
Furthermore, it is possible to have different profiles such as development, testing,
staging, production, and so on. These are logical names. Using these, one can
configure different values for the same properties for different environments.
This is quite handy when running the Spring Boot application against different
environments. In such cases, there is no rebuild required when moving from one
environment to another.

Update the .yaml file as follows. The Spring Boot group profiles properties based on
the dotted separator:

spring:
 profiles: development
server:
 port: 9090

spring:
 profiles: production
server:
 port: 8080

Run the Spring Boot application as follows to see the use of profiles:

mvn -Dspring.profiles.active=production install

mvn -Dspring.profiles.active=development install

Active profiles can be specified programmatically using the @ActiveProfiles
annotation, which is especially useful when running test cases, as follows:

@ActiveProfiles("test")

Other options to read properties
The properties can be loaded in a number of ways, such as the following:

•	 Command-line parameters (-Dhost.port =9090)
•	 Operating system environment variables
•	 JNDI (java:comp/env)

Chapter 2

[77]

Changing the default embedded web
server
Embedded HTTP listeners can easily be customized as follows. By default, Spring
Boot supports Tomcat, Jetty, and Undertow. In the following example, Tomcat is
replaced with Undertow:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 <exclusions>
 <exclusion>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-tomcat</artifactId>
 </exclusion>
 </exclusions>
</dependency>
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-undertow</artifactId>
</dependency>

Implementing Spring Boot security
It is important to secure microservices. In this section, some basic measures to
secure Spring Boot microservices will be reviewed using chapter2.bootrest to
demonstrate the security features.

Securing microservices with basic security
Adding basic authentication to Spring Boot is pretty simple. Add the following
dependency to pom.xml. This will include the necessary Spring security library files:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
</dependency>

Building Microservices with Spring Boot

[78]

Open Application.java and add @EnableGlobalMethodSecurity to the
Application class. This annotation will enable method-level security:

@EnableGlobalMethodSecurity
@SpringBootApplication
public class Application {
 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }
}

The default basic authentication assumes the user as being user. The default
password will be printed in the console at startup. Alternately, the username
and password can be added in application.properties, as shown here:

security.user.name=guest
security.user.password=guest123

Add a new test case in ApplicationTests to test the secure service results,
as in the following:

 @Test
 public void testSecureService() {
 String plainCreds = "guest:guest123";
 HttpHeaders headers = new HttpHeaders();
 headers.add("Authorization", "Basic " + new String(Base64.
encode(plainCreds.getBytes())));
 HttpEntity<String> request = new HttpEntity<String>(headers);
 RestTemplate restTemplate = new RestTemplate();

 ResponseEntity<Greet> response = restTemplate.exchange("http://
localhost:8080", HttpMethod.GET, request, Greet.class);
 Assert.assertEquals("Hello World!", response.getBody().
getMessage());
 }

As shown in the code, a new Authorization request header with Base64 encoding
the username-password string is created.

Rerun the application using Maven. Note that the new test case passed, but the old
test case failed with an exception. The earlier test case now runs without credentials,
and as a result, the server rejected the request with the following message:

org.springframework.web.client.HttpClientErrorException: 401 Unauthorized

Chapter 2

[79]

Securing a microservice with OAuth2
In this section, we will take a look at the basic Spring Boot configuration for OAuth2.
When a client application requires access to a protected resource, the client sends
a request to an authorization server. The authorization server validates the request
and provides an access token. This access token is validated for every client-to-server
request. The request and response sent back and forth depends on the grant type.

Read more about OAuth and grant types at http://oauth.net.

The resource owner password credentials grant approach will be used in this
example:

In this case, as shown in the preceding diagram, the resource owner provides the
client with a username and password. The client then sends a token request to the
authorization server by providing the credential information. The authorization
server authorizes the client and returns with an access token. On every subsequent
request, the server validates the client token.

http://oauth.net

Building Microservices with Spring Boot

[80]

To implement OAuth2 in our example, perform the following steps:

1.	 As a first step, update pom.xml with the OAuth2 dependency, as follows:
<dependency>
 <groupId>org.springframework.security.oauth</groupId>
 <artifactId>spring-security-oauth2</artifactId>
 <version>2.0.9.RELEASE</version>
</dependency>

2.	 Next, add two new annotations, @EnableAuthorizationServer
and @EnableResourceServer, to the Application.java file. The
@EnableAuthorizationServer annotation creates an authorization server
with an in-memory repository to store client tokens and provide clients with
a username, password, client ID, and secret. The @EnableResourceServer
annotation is used to access the tokens. This enables a spring security filter
that is authenticated via an incoming OAuth2 token.
In our example, both the authorization server and resource server are the
same. However, in practice, these two will run separately. Take a look at the
following code:

@EnableResourceServer
@EnableAuthorizationServer
@SpringBootApplication
public class Application {

3.	 Add the following properties to the application.properties file:
security.user.name=guest
security.user.password=guest123
security.oauth2.client.clientId: trustedclient
security.oauth2.client.clientSecret: trustedclient123
security.oauth2.client.authorized-grant-types: authorization_
code,refresh_token,password
security.oauth2.client.scope: openid

Chapter 2

[81]

4.	 Then, add another test case to test OAuth2, as follows:
 @Test
 public void testOAuthService() {
 ResourceOwnerPasswordResourceDetails resource = new
ResourceOwnerPasswordResourceDetails();
 resource.setUsername("guest");
 resource.setPassword("guest123");
 resource.setAccessTokenUri("http://localhost:8080/oauth/
token");
 resource.setClientId("trustedclient");
 resource.setClientSecret("trustedclient123");
 resource.setGrantType("password");

 DefaultOAuth2ClientContext clientContext = new
DefaultOAuth2ClientContext();
 OAuth2RestTemplate restTemplate = new
OAuth2RestTemplate(resource, clientContext);

 Greet greet = restTemplate.getForObject("http://
localhost:8080", Greet.class);

 Assert.assertEquals("Hello World!", greet.getMessage());
 }

As shown in the preceding code, a special REST template,
OAuth2RestTemplate, is created by passing the resource details
encapsulated in a resource details object. This REST template handles the
OAuth2 processes underneath. The access token URI is the endpoint for
the token access.

5.	 Rerun the application using mvn install. The first two test cases will
fail, and the new one will succeed. This is because the server only accepts
OAuth2-enabled requests.

These are quick configurations provided by Spring Boot out of the box but
are not good enough to be production grade. We may need to customize
ResourceServerConfigurer and AuthorizationServerConfigurer to make
them production-ready. This notwithstanding, the approach remains the same.

Building Microservices with Spring Boot

[82]

Enabling cross-origin access for
microservices
Browsers are generally restricted when client-side web applications running from
one origin request data from another origin. Enabling cross-origin access is generally
termed as CORS (Cross-Origin Resource Sharing).

This example shows how to enable cross-origin requests. With microservices, as each
service runs with its own origin, it will easily get into the issue of a client-side web
application consuming data from multiple origins. For instance, a scenario where
a browser client accessing Customer from the Customer microservice and Order
History from the Order microservices is very common in the microservices world.

Spring Boot provides a simple declarative approach to enabling cross-origin
requests. The following example shows how to enable a microservice to enable cross-
origin requests:

@RestController
class GreetingController{
 @CrossOrigin
 @RequestMapping("/")
 Greet greet(){
 return new Greet("Hello World!");
 }
}

Chapter 2

[83]

By default, all the origins and headers are accepted. We can further customize
the cross-origin annotations by giving access to specific origins, as follows. The
@CrossOrigin annotation enables a method or class to accept cross-origin requests:

@CrossOrigin("http://mytrustedorigin.com")

Global CORS can be enabled using the WebMvcConfigurer bean and customizing
the addCorsMappings(CorsRegistry registry) method.

Implementing Spring Boot messaging
In an ideal case, all microservice interactions are expected to happen asynchronously
using publish-subscribe semantics. Spring Boot provides a hassle-free mechanism to
configure messaging solutions:

In this example, we will create a Spring Boot application with a sender and receiver,
both connected though an external queue. Perform the following steps:

The full source code of this example is available as the
chapter2.bootmessaging project in the code files of this book.

Building Microservices with Spring Boot

[84]

1.	 Create a new project using STS to demonstrate this capability. In this
example, instead of selecting Web, select AMQP under I/O:

2.	 Rabbit MQ will also be needed for this example. Download and install the
latest version of Rabbit MQ from https://www.rabbitmq.com/download.
html.
Rabbit MQ 3.5.6 is used in this book.

3.	 Follow the installation steps documented on the site. Once ready, start the
RabbitMQ server via the following command:
$./rabbitmq-server

4.	 Make the configuration changes to the application.properties file to
reflect the RabbitMQ configuration. The following configuration uses the
default port, username, and password of RabbitMQ:
spring.rabbitmq.host=localhost
spring.rabbitmq.port=5672
spring.rabbitmq.username=guest
spring.rabbitmq.password=guest

https://www.rabbitmq.com/download.html
https://www.rabbitmq.com/download.html

Chapter 2

[85]

5.	 Add a message sender component and a queue named TestQ of the org.
springframework.amqp.core.Queue type to the Application.java file
under src/main/java. RabbitMessagingTemplate is a convenient way to
send messages, which will abstract all the messaging semantics. Spring Boot
provides all boilerplate configurations to send messages:
@Component
class Sender {
 @Autowired
 RabbitMessagingTemplate template;
 @Bean
 Queue queue() {
 return new Queue("TestQ", false);
 }
 public void send(String message){
 template.convertAndSend("TestQ", message);
 }
}

6.	 To receive the message, all that needs to be used is a @RabbitListener
annotation. Spring Boot autoconfigures all the required boilerplate
configurations:
@Component
class Receiver {
 @RabbitListener(queues = "TestQ")
 public void processMessage(String content) {
 System.out.println(content);
 }
}

7.	 The last piece of this exercise is to wire the sender to our main application
and implement the run method of CommandLineRunner to initiate the
message sending. When the application is initialized, it invokes the run
method of CommandLineRunner, as follows:
@SpringBootApplication
public class Application implements CommandLineRunner{

 @Autowired
 Sender sender;

 public static void main(String[] args) {

Building Microservices with Spring Boot

[86]

 SpringApplication.run(Application.class, args);
 }

 @Override
 public void run(String... args) throws Exception {
 sender.send("Hello Messaging..!!!");
 }
}

8.	 Run the application as a Spring Boot application and verify the output.
The following message will be printed in the console:
Hello Messaging..!!!

Developing a comprehensive
microservice example
So far, the examples we have considered are no more than just a simple "Hello
world." Putting together what we have learned, this section demonstrates an
end-to-end Customer Profile microservice implementation. The Customer Profile
microservices will demonstrate interaction between different microservices. It also
demonstrates microservices with business logic and primitive data stores.

In this example, two microservices, the Customer Profile and Customer Notification
services, will be developed:

As shown in the diagram, the Customer Profile microservice exposes methods to
create, read, update, and delete (CRUD) a customer and a registration service to
register a customer. The registration process applies certain business logic, saves the
customer profile, and sends a message to the Customer Notification microservice.
The Customer Notification microservice accepts the message sent by the registration
service and sends an e-mail message to the customer using an SMTP server.
Asynchronous messaging is used to integrate Customer Profile with the Customer
Notification service.

Chapter 2

[87]

The Customer microservices class domain model diagram is as shown here:

CustomerController in the diagram is the REST endpoint, which invokes a
component class, CustomerComponent. The component class/bean handles all the
business logic. CustomerRepository is a Spring data JPA repository defined to
handle the persistence of the Customer entity.

The full source code of this example is available as the
chapter2.bootcustomer and chapter2.
bootcustomernotification projects in the code files of this book.

1.	 Create a new Spring Boot project and call it chapter2.bootcustomer, the
same way as earlier. Select the options as in the following screenshot in the
starter module selection screen:

Building Microservices with Spring Boot

[88]

This will create a web project with JPA, the REST repository, and H2
as a database. H2 is a tiny in-memory embedded database with which it is
easy to demonstrate database features. In the real world, it is recommended
to use an appropriate enterprise-grade database. This example uses JPA to
define persistence entities and the REST repository to expose REST-based
repository services.
The project structure will be similar to the following screenshot:

2.	 Start building the application by adding an Entity class named Customer. For
simplicity, there are only three fields added to the Customer Entity class: the
autogenerated id field, name, and email. Take a look at the following code:
@Entity
class Customer {
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private Long id;
 private String name;
 private String email;

3.	 Add a repository class to handle the persistence handling of Customer.
CustomerRepository extends the standard JPA repository. This means
that all CRUD methods and default finder methods are automatically
implemented by the Spring Data JPA repository, as follows:
@RepositoryRestResource
interface CustomerRespository extends JpaRepository
<Customer,Long>{
 Optional<Customer> findByName(@Param("name") String name);
}

Chapter 2

[89]

In this example, we added a new method to the repository class, findByName,
which essentially searches the customer based on the customer name and
returns a Customer object if there is a matching name.

4.	 The @RepositoryRestResource annotation enables the repository
access through RESTful services. This will also enable HATEOAS and HAL
by default. As for CRUD methods there is no additional business logic
required, we will leave it as it is without controller or component classes.
Using HATEOAS will help us navigate through Customer Repository
methods effortlessly.
Note that there is no configuration added anywhere to point to any database.
As H2 libraries are in the class path, all the configuration is done by default
by Spring Boot based on the H2 autoconfiguration.

5.	 Update the Application.java file by adding CommandLineRunner to
initialize the repository with some customer records, as follows:
@SpringBootApplication
public class Application {
 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }

 @Bean
 CommandLineRunner init(CustomerRespository repo) {
 return (evt) -> {
 repo.save(new Customer("Adam","adam@boot.com"));
 repo.save(new Customer("John","john@boot.com"));
 repo.save(new Customer("Smith","smith@boot.com"));
 repo.save(new Customer("Edgar","edgar@boot.com"));
 repo.save(new Customer("Martin","martin@boot.com"));
 repo.save(new Customer("Tom","tom@boot.com"));
 repo.save(new Customer("Sean","sean@boot.com"));
 };
 }
}

6.	 CommandLineRunner, defined as a bean, indicates that it should run when
it is contained in SpringApplication. This will insert six sample customer
records into the database at startup.

7.	 At this point, run the application as Spring Boot App. Open the HAL
browser and point the browser to http://localhost:8080.

Building Microservices with Spring Boot

[90]

8.	 In the Explorer section, point to http://localhost:8080/customers and
click on Go. This will list all the customers in the Response Body section of
the HAL browser.

9.	 In the Explorer section, enter http://localhost:8080/customers?size=2
&page=1&sort=name and click on Go. This will automatically execute paging
and sorting on the repository and return the result.
As the page size is set to 2 and the first page is requested, it will come back
with two records in a sorted order.

10.	 Review the Links section. As shown in the following screenshot, it will
facilitate navigating first, next, prev, and last. These are done using the
HATEOAS links automatically generated by the repository browser:

11.	 Also, one can explore the details of a customer by selecting the appropriate
link, such as http://localhost:8080/customers/2.

Chapter 2

[91]

12.	 As the next step, add a controller class, CustomerController, to handle
service endpoints. There is only one endpoint in this class, /register, which
is used to register a customer. If successful, it returns the Customer object as
the response, as follows:
@RestController
class CustomerController{

 @Autowired
 CustomerRegistrar customerRegistrar;

 @RequestMapping(path="/register", method = RequestMethod.POST)
 Customer register(@RequestBody Customer customer){
 return customerRegistrar.register(customer);
 }
}

13.	 A CustomerRegistrar component is added to handle the business logic.
In this case, there is only minimal business logic added to the component.
In this component class, while registering a customer, we will just check
whether the customer name already exists in the database or not. If it does
not exist, then we will insert a new record, and otherwise, we will send an
error message back, as follows:
@Component
class CustomerRegistrar {

 CustomerRespository customerRespository;

 @Autowired
 CustomerRegistrar(CustomerRespository customerRespository){
 this.customerRespository = customerRespository;
 }

 Customer register(Customer customer){
 Optional<Customer> existingCustomer = customerRespository.
findByName(customer.getName());
 if (existingCustomer.isPresent()){
 throw new RuntimeException("is already exists");
 } else {
 customerRespository.save(customer);
 }
 return customer;
 }
}

Building Microservices with Spring Boot

[92]

14.	 Restart the Boot application and test using the HAL browser via the URL
http://localhost:8080.

15.	 Point the Explorer field to http://localhost:8080/customers. Review the
results in the Links section:

16.	 Click on the NON-GET option against self. This will open a form to create a
new customer:

17.	 Fill the form and change the Action as shown in the diagram. Click on the
Make Request button. This will call the register service and register the
customer. Try giving a duplicate name to test the negative case.

Chapter 2

[93]

18.	 Let's complete the last part in the example by integrating the Customer
Notification service to notify the customer. When registration is successful,
send an e-mail to the customer by asynchronously calling the Customer
Notification microservice.

19.	 First update CustomerRegistrar to call the second service. This is done
through messaging. In this case, we injected a Sender component to send a
notification to the customer by passing the customer's e-mail address to the
sender, as follows:
@Component
@Lazy
class CustomerRegistrar {

 CustomerRespository customerRespository;
 Sender sender;

 @Autowired
 CustomerRegistrar(CustomerRespository customerRespository,
Sender sender){
 this.customerRespository = customerRespository;
 this.sender = sender;
 }

 Customer register(Customer customer){
 Optional<Customer> existingCustomer = customerRespository.
findByName(customer.getName());
 if (existingCustomer.isPresent()){
 throw new RuntimeException("is already exists");
 } else {
 customerRespository.save(customer);
 sender.send(customer.getEmail());
 }
 return customer;
 }
}

20.	 The sender component will be based on RabbitMQ and AMQP. In this
example, RabbitMessagingTemplate is used as explored in the last
messaging example; take a look at the following:
@Component
@Lazy
class Sender {

 @Autowired

Building Microservices with Spring Boot

[94]

 RabbitMessagingTemplate template;

 @Bean
 Queue queue() {
 return new Queue("CustomerQ", false);
 }

 public void send(String message){
 template.convertAndSend("CustomerQ", message);
 }
}

The @Lazy annotation is a useful one and it helps to increase the boot startup
time. These beans will be initialized only when the need arises.

21.	 We will also update the application.property file to include Rabbit MQ-
related properties, as follows:
spring.rabbitmq.host=localhost
spring.rabbitmq.port=5672
spring.rabbitmq.username=guest
spring.rabbitmq.password=guest

22.	 We are ready to send the message. To consume the message and send
e-mails, we will create a notification service. For this, let's create another
Spring Boot service, chapter2.bootcustomernotification. Make sure that
the AMQP and Mail starter libraries are selected when creating the Spring
Boot service. Both AMQP and Mail are under I/O.

23.	 The package structure of the chapter2.bootcustomernotification project
is as shown here:

Chapter 2

[95]

24.	 Add a Receiver class. The Receiver class waits for a message on customer.
This will receive a message sent by the Customer Profile service. On the
arrival of a message, it sends an e-mail, as follows:
@Component
class Receiver {
 @Autowired
 Mailer mailer;

 @Bean
 Queue queue() {
 return new Queue("CustomerQ", false);
 }

 @RabbitListener(queues = "CustomerQ")
 public void processMessage(String email) {
 System.out.println(email);
 mailer.sendMail(email);
 }
}

25.	 Add another component to send an e-mail to the customer. We will use
JavaMailSender to send an e-mail via the following code:
@Component
class Mailer {
 @Autowired
 private JavaMailSender javaMailService;
 public void sendMail(String email){
 SimpleMailMessage mailMessage=new
 SimpleMailMessage();
 mailMessage.setTo(email);
 mailMessage.setSubject("Registration");
 mailMessage.setText("Successfully Registered");
 javaMailService.send(mailMessage);
 }
}

Behind the scenes, Spring Boot automatically configures all the parameters
required by JavaMailSender.

26.	 To test SMTP, a test setup for SMTP is required to ensure that the mails
are going out. In this example, FakeSMTP will be used. You can download
FakeSMTP from http://nilhcem.github.io/FakeSMTP.

http://nilhcem.github.io/FakeSMTP

Building Microservices with Spring Boot

[96]

27.	 Once you download fakeSMTP-2.0.jar, run the SMTP server by executing
the following command:
$ java -jar fakeSMTP-2.0.jar

This will open a GUI to monitor e-mail messages. Click on the Start Server
button next to the listening port textbox.

28.	 Update application.properties with the following configuration
parameters to connect to RabbitMQ as well as to the mail server:
spring.rabbitmq.host=localhost
spring.rabbitmq.port=5672
spring.rabbitmq.username=guest
spring.rabbitmq.password=guest

spring.mail.host=localhost
spring.mail.port=2525

29.	 We are ready to test our microservices end to end. Start both the Spring Boot
apps. Open the browser and repeat the customer creation steps through the
HAL browser. In this case, immediately after submitting the request, we will
be able to see the e-mail in the SMTP GUI.

Internally, the Customer Profile service asynchronously calls the
Customer Notification service, which, in turn, sends the e-mail message
to the SMTP server:

Chapter 2

[97]

Spring Boot actuators
The previous sections explored most of the Spring Boot features required to develop
a microservice. In this section, some of the production-ready operational aspects of
Spring Boot will be explored.

Spring Boot actuators provide an excellent out-of-the-box mechanism to monitor
and manage Spring Boot applications in production:

The full source code of this example is available as the
chapter2.bootactuator project in the code files of this book.

1.	 Create another Spring Starter Project and name it chapter2.bootactuator.
This time, select Web and Actuators under Ops. Similar to the chapter2.
bootrest project, add a GreeterController endpoint with the
greet method.

2.	 Start the application as Spring Boot app.
3.	 Point the browser to localhost:8080/actuator. This will open the HAL

browser. Then, review the Links section.
A number of links are available under the Links section. These are
automatically exposed by the Spring Boot actuator:

Building Microservices with Spring Boot

[98]

Some of the important links are listed as follows:

•	 dump: This performs a thread dump and displays the result
•	 mappings: This lists all the HTTP request mappings
•	 info: This displays information about the application
•	 health: This displays the application's health conditions
•	 autoconfig: This displays the autoconfiguration report
•	 metrics: This shows different metrics collected from the application

Monitoring using JConsole
Alternately, we can use the JMX console to see the Spring Boot information. Connect
to the remote Spring Boot instance from JConsole. The Boot information will be
shown as follows:

Chapter 2

[99]

Monitoring using SSH
Spring Boot provides remote access to the Boot application using SSH. The following
command connects to the Spring Boot application from a terminal window:

$ ssh -p 2000 user@localhost

The password can be customized by adding the shell.auth.simple.user.
password property in the application.properties file. The updated
application.properties file will look similar to the following:

shell.auth.simple.user.password=admin

When connected with the preceding command, similar actuator information can be
accessed. Here is an example of the metrics information accessed through the CLI:

•	 help: This lists out all the options available
•	 dashboard: This is one interesting feature that shows a lot of system-level

information

Configuring application information
The following properties can be set in application.properties to customize
application-related information. After adding, restart the server and visit the /info
endpoint of the actuator to take a look at the updated information, as follows:

info.app.name=Boot actuator
info.app.description= My Greetings Service
info.app.version=1.0.0

Adding a custom health module
Adding a new custom module to the Spring Boot application is not so complex.
To demonstrate this feature, assume that if a service gets more than two transactions
in a minute, then the server status will be set as Out of Service.

In order to customize this, we have to implement the HealthIndicator interface
and override the health method. The following is a quick and dirty implementation
to do the job:

class TPSCounter {
 LongAdder count;
 int threshold = 2;

Building Microservices with Spring Boot

[100]

 Calendar expiry = null;

 TPSCounter(){
 this.count = new LongAdder();
 this.expiry = Calendar.getInstance();
 this.expiry.add(Calendar.MINUTE, 1);
 }

 boolean isExpired(){
 return Calendar.getInstance().after(expiry);
 }

 boolean isWeak(){
 return (count.intValue() > threshold);
 }

 void increment(){
 count.increment();
 }
}

The preceding class is a simple POJO class that maintains the transaction counts in the
window. The isWeak method checks whether the transaction in a particular window
reached its threshold. The isExpired method checks whether the current window is
expired or not. The increment method simply increases the counter value.

For the next step, implement our custom health indicator class, TPSHealth. This is
done by extending HealthIndicator, as follows:

@Component
class TPSHealth implements HealthIndicator {
 TPSCounter counter;

@Override
 public Health health() {
 boolean health = counter.isWeak(); // perform some specific
health check
 if (health) {
 return Health.outOfService().withDetail("Too many
requests", "OutofService").build();
 }
 return Health.up().build();
 }

Chapter 2

[101]

 void updateTx(){
 if(counter == null || counter.isExpired()){
 counter = new TPSCounter();

 }
 counter.increment();
 }
}

The health method checks whether the counter is weak or not. A weak counter
means the service is handling more transactions than it can handle. If it is weak,
it marks the instance as Out of Service.

Finally, we will autowire TPSHealth into the GreetingController class and then
call health.updateTx() in the greet method, as follows:

 Greet greet(){
 logger.info("Serving Request....!!!");
 health.updateTx();
 return new Greet("Hello World!");
 }

Go to the /health end point in the HAL browser and take a look at the status
of the server.

Now, open another browser, point to http://localhost:8080, and fire the
service twice or thrice. Go back to the /health endpoint and refresh to see the
status. It should be changed to Out of Service.

In this example, as there is no action taken other than collecting the health status,
even though the status is Out of Service, new service calls will still go through.
However, in the real world, a program should read the /health endpoint and block
further requests from going to this instance.

Building custom metrics
Similar to health, customization of the metrics is also possible. The following example
shows how to add counter service and gauge service, just for demonstration purposes:

 @Autowired
 CounterService counterService;

 @Autowired
 GaugeService gaugeService;

Building Microservices with Spring Boot

[102]

Add the following methods in the greet method:

 this.counterService.increment("greet.txnCount");
 this.gaugeService.submit("greet.customgauge", 1.0);

Restart the server and go to /metrics to see the new gauge and counter added
already reflected there.

Documenting microservices
The traditional approach of API documentation is either by writing service
specification documents or using static service registries. With a large number of
microservices, it would be hard to keep the documentation of APIs in sync.

Microservices can be documented in many ways. This section will explore how
microservices can be documented using the popular Swagger framework. The
following example will use Springfox libraries to generate REST API documentation.
Springfox is a set of Java- and Spring-friendly libraries.

Create a new Spring Starter Project and select Web in the library selection window.
Name the project chapter2.swagger.

The full source code of this example is available as the
chapter2.swagger project in the code files of this book.

As Springfox libraries are not part of the Spring suite, edit pom.xml and add
Springfox Swagger library dependencies. Add the following dependencies to
the project:

<dependency>
 <groupId>io.springfox</groupId>
 <artifactId>springfox-swagger2</artifactId>
 <version>2.3.1</version>
</dependency>
<dependency>
 <groupId>io.springfox</groupId>
 <artifactId>springfox-swagger-ui</artifactId>
 <version>2.3.1</version>
</dependency>

Chapter 2

[103]

Create a REST service similar to the services created earlier, but also add the
@EnableSwagger2 annotation, as follows:

@SpringBootApplication
@EnableSwagger2
public class Application {

This is all that's required for a basic Swagger documentation. Start the application
and point the browser to http://localhost:8080/swagger-ui.html. This will
open the Swagger API documentation page:

As shown in the diagram, the Swagger lists out the possible operations on Greet
Controller. Click on the GET operation. This expands the GET row, which provides
an option to try out the operation.

Building Microservices with Spring Boot

[104]

Summary
In this chapter, you learned about Spring Boot and its key features to build
production-ready applications.

We explored the previous-generation web applications and then how Spring Boot
makes developers' lives easier to develop fully qualified microservices. We also
discussed the asynchronous message-based interaction between services. Further,
we explored how to achieve some of the key capabilities required for microservices,
such as security, HATEOAS, cross-origin, configurations, and so on with practical
examples. We also took a look at how Spring Boot actuators help the operations
teams and also how we can customize it to our needs. Finally, documenting
microservices APIs was also explored.

In the next chapter, we will take a deeper look at some of the practical issues that
may arise when implementing microservices. We will also discuss a capability
model that essentially helps organizations when dealing with large microservices
implementations.

[105]

Applying Microservices
Concepts

Microservices are good, but can also be an evil if they are not properly conceived.
Wrong microservice interpretations could lead to irrecoverable failures.

This chapter will examine the technical challenges around practical implementations
of microservices. It will also provide guidelines around critical design decisions for
successful microservices development. The solutions and patterns for a number of
commonly raised concerns around microservices will also be examined. This chapter
will also review the challenges in enterprise scale microservices development, and
how to overcome those challenges. More importantly, a capability model for a
microservices ecosystem will be established at the end.

In this chapter you will learn about the following:

•	 Trade-offs between different design choices and patterns to be considered
when developing microservices

•	 Challenges and anti-patterns in developing enterprise grade microservices
•	 A capability model for a microservices ecosystem

Patterns and common design decisions
Microservices have gained enormous popularity in recent years. They have evolved
as the preferred choice of architects, putting SOA into the backyards. While
acknowledging the fact that microservices are a vehicle for developing scalable cloud
native systems, successful microservices need to be carefully designed to avoid
catastrophes. Microservices are not the one-size-fits-all, universal solution for all
architecture problems.

Applying Microservices Concepts

[106]

Generally speaking, microservices are a great choice for building a lightweight,
modular, scalable, and distributed system of systems. Over-engineering, wrong
use cases, and misinterpretations could easily turn the system into a disaster. While
selecting the right use cases is paramount in developing a successful microservice, it
is equally important to take the right design decisions by carrying out an appropriate
trade-off analysis. A number of factors are to be considered when designing
microservices, as detailed in the following sections.

Establishing appropriate microservice
boundaries
One of the most common questions relating to microservices is regarding the size of
the service. How big (mini-monolithic) or how small (nano service) can a microservice
be, or is there anything like right-sized services? Does size really matter?

A quick answer could be "one REST endpoint per microservice", or "less than 300
lines of code", or "a component that performs a single responsibility". But before we
pick up any of these answers, there is lot more analysis to be done to understand the
boundaries for our services.

Domain-driven design (DDD) defines the concept of a bounded context. A
bounded context is a subdomain or a subsystem of a larger domain or system
that is responsible for performing a particular function.

Read more about DDD at http://domainlanguage.com/ddd/.

The following diagram is an example of the domain model:

In a finance back office, system invoices, accounting, billing, and the like represent
different bounded contexts. These bounded contexts are strongly isolated domains
that are closely aligned with business capabilities. In the financial domain, the
invoices, accounting, and billing are different business capabilities often handled
by different subunits under the finance department.

http://domainlanguage.com/ddd/

Chapter 3

[107]

A bounded context is a good way to determine the boundaries of microservices.
Each bounded context could be mapped to a single microservice. In the real world,
communication between bounded contexts are typically less coupled, and often,
disconnected.

Even though real world organizational boundaries are the simplest mechanisms
for establishing a bounded context, these may prove wrong in some cases due to
inherent problems within the organization's structures. For example, a business
capability may be delivered through different channels such as front offices, online,
roaming agents, and so on. In many organizations, the business units may be
organized based on delivery channels rather than the actual underlying business
capabilities. In such cases, organization boundaries may not provide accurate service
boundaries.

A top-down domain decomposition could be another way to establish the right
bounded contexts.

There is no silver bullet to establish microservices boundaries, and often, this
is quite challenging. Establishing boundaries is much easier in the scenario of
monolithic application to microservices migration, as the service boundaries and
dependencies are known from the existing system. On the other hand, in a green
field microservices development, the dependencies are hard to establish upfront.

The most pragmatic way to design microservices boundaries is to run the scenario
at hand through a number of possible options, just like a service litmus test. Keep in
mind that there may be multiple conditions matching a given scenario that will lead
to a trade-off analysis.

The following scenarios could help in defining the microservice boundaries.

Autonomous functions
If the function under review is autonomous by nature, then it can be taken as
a microservices boundary. Autonomous services typically would have fewer
dependencies on external functions. They accept input, use its internal logic and
data for computation, and return a result. All utility functions such as an encryption
engine or a notification engine are straightforward candidates.

A delivery service that accepts an order, processes it, and then informs the trucking
service is another example of an autonomous service. An online flight search based
on cached seat availability information is yet another example of an autonomous
function.

Applying Microservices Concepts

[108]

Size of a deployable unit
Most of the microservices ecosystems will take advantage of automation, such as
automatic integration, delivery, deployment, and scaling. Microservices covering
broader functions result in larger deployment units. Large deployment units pose
challenges in automatic file copy, file download, deployment, and start up times.
For instance, the size of a service increases with the density of the functions that
it implements.

A good microservice ensures that the size of its deployable units remains manageable.

Most appropriate function or subdomain
It is important to analyze what would be the most useful component to detach from
the monolithic application. This is particularly applicable when breaking monolithic
applications into microservices. This could be based on parameters such as resource-
intensiveness, cost of ownership, business benefits, or flexibility.

In a typical hotel booking system, approximately 50-60% of the requests are search-
based. In this case, moving out the search function could immediately bring in
flexibility, business benefits, cost reduction, resource free up, and so on.

Polyglot architecture
One of the key characteristics of microservices is its support for polyglot architecture.
In order to meet different non-functional and functional requirements, components
may require different treatments. It could be different architectures, different
technologies, different deployment topologies, and so on. When components are
identified, review them against the requirement for polyglot architectures.

In the hotel booking scenario mentioned earlier, a Booking microservice may need
transactional integrity, whereas a Search microservice may not. In this case, the
Booking microservice may use an ACID compliance database such as MySQL,
whereas the Search microservice may use an eventual consistent database such
as Cassandra.

Selective scaling
Selective scaling is related to the previously discussed polyglot architecture. In
this context, all functional modules may not require the same level of scalability.
Sometimes, it may be appropriate to determine boundaries based on scalability
requirements.

Chapter 3

[109]

For example, in the hotel booking scenario, the Search microservice has to scale
considerably more than many of the other services such as the Booking microservice
or the Notification microservice due to the higher velocity of search requests. In this
case, a separate Search microservice could run on top of an Elasticsearch or an
in-memory data grid for better response.

Small, agile teams
Microservices enable Agile development with small, focused teams developing
different parts of the pie. There could be scenarios where parts of the systems
are built by different organizations, or even across different geographies, or by
teams with varying skill sets. This approach is a common practice, for example,
in manufacturing industries.

In the microservices world, each of these teams builds different microservices, and
then assembles them together. Though this is not the desired way to break down the
system, organizations may end up in such situations. Hence, this approach cannot
be completely ruled out.

In an online product search scenario, a service could provide personalized options
based on what the customer is looking for. This may require complex machine
learning algorithms, and hence need a specialist team. In this scenario, this function
could be built as a microservice by a separate specialist team.

Single responsibility
In theory, the single responsibility principle could be applied at a method, at a class,
or at a service. However, in the context of microservices, it does not necessarily map
to a single service or endpoint.

A more practical approach could be to translate single responsibility into single
business capability or a single technical capability. As per the single responsibility
principle, one responsibility cannot be shared by multiple microservices. Similarly,
one microservice should not perform multiple responsibilities.

There could, however, be special cases where a single business capability is divided
across multiple services. One of such cases is managing the customer profile,
where there could be situations where you may use two different microservices for
managing reads and writes using a Command Query Responsibility Segregation
(CQRS) approach to achieve some of the quality attributes.

Applying Microservices Concepts

[110]

Replicability or changeability
Innovation and speed are of the utmost importance in IT delivery. Microservices
boundaries should be identified in such a way that each microservice is easily
detachable from the overall system, with minimal cost of re-writing. If part of
the system is just an experiment, it should ideally be isolated as a microservice.

An organization may develop a recommendation engine or a customer ranking
engine as an experiment. If the business value is not realized, then throw away
that service, or replace it with another one.

Many organizations follow the startup model, where importance is given to meeting
functions and quick delivery. These organizations may not worry too much about the
architecture and technologies. Instead, the focus will be on what tools or technologies
can deliver solutions faster. Organizations increasingly choose the approach of
developing Minimum Viable Products (MVPs) by putting together a few services,
and allowing the system to evolve. Microservices play a vital role in such cases where
the system evolves, and services gradually get rewritten or replaced.

Coupling and cohesion
Coupling and cohesion are two of the most important parameters for deciding
service boundaries. Dependencies between microservices have to be evaluated
carefully to avoid highly coupled interfaces. A functional decomposition, together
with a modeled dependency tree, could help in establishing a microservices
boundary. Avoiding too chatty services, too many synchronous request-response
calls, and cyclic synchronous dependencies are three key points, as these could
easily break the system. A successful equation is to keep high cohesion within a
microservice, and loose coupling between microservices. In addition to this, ensure
that transaction boundaries are not stretched across microservices. A first class
microservice will react upon receiving an event as an input, execute a number
of internal functions, and finally send out another event. As part of the compute
function, it may read and write data to its own local store.

Think microservice as a product
DDD also recommends mapping a bounded context to a product. As per DDD, each
bounded context is an ideal candidate for a product. Think about a microservice
as a product by itself. When microservice boundaries are established, assess them
from a product's point of view to see whether they really stack up as product. It is
much easier for business users to think boundaries from a product point of view.
A product boundary may have many parameters, such as a targeted community,
flexibility in deployment, sell-ability, reusability, and so on.

Chapter 3

[111]

Designing communication styles
Communication between microservices can be designed either in synchronous
(request-response) or asynchronous (fire and forget) styles.

Synchronous style communication
The following diagram shows an example request/response style service:

In synchronous communication, there is no shared state or object. When a caller
requests a service, it passes the required information and waits for a response.
This approach has a number of advantages.

An application is stateless, and from a high availability standpoint, many
active instances can be up and running, accepting traffic. Since there are no
other infrastructure dependencies such as a shared messaging server, there are
management fewer overheads. In case of an error at any stage, the error will be
propagated back to the caller immediately, leaving the system in a consistent state,
without compromising data integrity.

The downside in a synchronous request-response communication is that the user
or the caller has to wait until the requested process gets completed. As a result, the
calling thread will wait for a response, and hence, this style could limit the scalability
of the system.

A synchronous style adds hard dependencies between microservices. If one service
in the service chain fails, then the entire service chain will fail. In order for a service
to succeed, all dependent services have to be up and running. Many of the failure
scenarios have to be handled using timeouts and loops.

Applying Microservices Concepts

[112]

Asynchronous style communication
The following diagram is a service designed to accept an asynchronous message as
input, and send the response asynchronously for others to consume:

The asynchronous style is based on reactive event loop semantics which decouple
microservices. This approach provides higher levels of scalability, because services
are independent, and can internally spawn threads to handle an increase in
load. When overloaded, messages will be queued in a messaging server for later
processing. That means that if there is a slowdown in one of the services, it will not
impact the entire chain. This provides higher levels of decoupling between services,
and therefore maintenance and testing will be simpler.

The downside is that it has a dependency to an external messaging server. It is
complex to handle the fault tolerance of a messaging server. Messaging typically
works with an active/passive semantics. Hence, handling continuous availability of
messaging systems is harder to achieve. Since messaging typically uses persistence,
a higher level of I/O handling and tuning is required.

How to decide which style to choose?
Both approaches have their own merits and constraints. It is not possible to develop
a system with just one approach. A combination of both approaches is required
based on the use cases. In principle, the asynchronous approach is great for building
true, scalable microservice systems. However, attempting to model everything as
asynchronous leads to complex system designs.

How does the following example look in the context where an end user clicks on a
UI to get profile details?

Chapter 3

[113]

This is perhaps a simple query to the backend system to get a result in a request-
response model. This can also be modeled in an asynchronous style by pushing
a message to an input queue, and waiting for a response in an output queue till
a response is received for the given correlation ID. However, though we use
asynchronous messaging, the user is still blocked for the entire duration of the query.

Another use case is that of a user clicking on a UI to search hotels, which is depicted
in the following diagram:

This is very similar to the previous scenario. However, in this case, we assume that
this business function triggers a number of activities internally before returning
the list of hotels back to the user. For example, when the system receives this
request, it calculates the customer ranking, gets offers based on the destination, gets
recommendations based on customer preferences, optimizes the prices based on
customer values and revenue factors, and so on. In this case, we have an opportunity
to do many of these activities in parallel so that we can aggregate all these results
before presenting them to the customer. As shown in the preceding diagram,
virtually any computational logic could be plugged in to the search pipeline
listening to the IN queue.

An effective approach in this case is to start with a synchronous request response,
and refactor later to introduce an asynchronous style when there is value in doing that.

Applying Microservices Concepts

[114]

The following example shows a fully asynchronous style of service interactions:

The service is triggered when the user clicks on the booking function. It is again, by
nature, a synchronous style communication. When booking is successful, it sends
a message to the customer's e-mail address, sends a message to the hotel's booking
system, updates the cached inventory, updates the loyalty points system, prepares an
invoice, and perhaps more. Instead of pushing the user into a long wait state, a better
approach is to break the service into pieces. Let the user wait till a booking record
is created by the Booking Service. On successful completion, a booking event will
be published, and return a confirmation message back to the user. Subsequently,
all other activities will happen in parallel, asynchronously.

In all three examples, the user has to wait for a response. With the new web
application frameworks, it is possible to send requests asynchronously, and define
the callback method, or set an observer for getting a response. Therefore, the users
won't be fully blocked from executing other activities.

In general, an asynchronous style is always better in the microservices world, but
identifying the right pattern should be purely based on merits. If there are no merits
in modeling a transaction in an asynchronous style, then use the synchronous style
till you find an appealing case. Use reactive programming frameworks to avoid
complexity when modeling user-driven requests, modeled in an asynchronous style.

Chapter 3

[115]

Orchestration of microservices
Composability is one of the service design principles. This leads to confusion
around who is responsible for the composing services. In the SOA world, ESBs are
responsible for composing a set of finely-grained services. In some organizations,
ESBs play the role of a proxy, and service providers themselves compose and expose
coarse-grained services. In the SOA world, there are two approaches for handling
such situations.

The first approach is orchestration, which is depicted in the following diagram:

In the orchestration approach, multiple services are stitched together to get a
complete function. A central brain acts as the orchestrator. As shown in the diagram,
the order service is a composite service that will orchestrate other services. There
could be sequential as well as parallel branches from the master process. Each task
will be fulfilled by an atomic task service, typically a web service. In the SOA world,
ESBs play the role of orchestration. The orchestrated service will be exposed by ESBs
as a composite service.

The second approach is choreography, which is shown in the following diagram:

Applying Microservices Concepts

[116]

In the choreography approach, there is no central brain. An event, a booking event in
this case, is published by a producer, a number of consumers wait for the event, and
independently apply different logics on the incoming event. Sometimes, events could
even be nested where the consumers can send another event which will be consumed
by another service. In the SOA world, the caller pushes a message to the ESB, and the
downstream flow will be automatically determined by the consuming services.

Microservices are autonomous. This essentially means that in an ideal situation,
all required components to complete their function should be within the service.
This includes the database, orchestration of its internal services, intrinsic state
management, and so on. The service endpoints provide coarse-grained APIs. This
is perfectly fine as long as there are no external touch points required. But in reality,
microservices may need to talk to other microservices to fulfil their function.

In such cases, choreography is the preferred approach for connecting multiple
microservices together. Following the autonomy principle, a component sitting
outside a microservice and controlling the flow is not the desired option. If the use
case can be modeled in choreographic style, that would be the best possible way to
handle the situation.

But it may not be possible to model choreography in all cases. This is depicted in the
following diagram:

In the preceding example, Reservation and Customer are two microservices, with
clearly segregated functional responsibilities. A case could arise when Reservation
would want to get Customer preferences while creating a reservation. These are
quite normal scenarios when developing complex systems.

Can we move Customer to Reservation so that Reservation will be complete by
itself? If Customer and Reservation are identified as two microservices based on
various factors, it may not be a good idea to move Customer to Reservation.
In such a case, we will meet another monolithic application sooner or later.

Chapter 3

[117]

Can we make the Reservation to Customer call asynchronous? This example is
shown in the following diagram:

Customer preference is required for Reservation to progress, and hence, it may
require a synchronous blocking call to Customer. Retrofitting this by modeling
asynchronously does not really make sense.

Can we take out just the orchestration bit, and create another composite
microservice, which then composes Reservation and Customer?

This is acceptable in the approach for composing multiple components within a
microservice. But creating a composite microservice may not be a good idea. We will
end up creating many microservices with no business alignment, which would not
be autonomous, and could result in many fine-grained microservices.

Applying Microservices Concepts

[118]

Can we duplicate customer preference by keeping a slave copy of the preference data
into Reservation?

Changes will be propagated whenever there is a change in the master. In this
case, Reservation can use customer preference without fanning out a call. It is a
valid thought, but we need to carefully analyze this. Today we replicate customer
preference, but in another scenario, we may want to reach out to customer service
to see whether the customer is black-listed from reserving. We have to be extremely
careful in deciding what data to duplicate. This could add to the complexity.

How many endpoints in a microservice?
In many situations, developers are confused with the number of endpoints per
microservice. The question really is whether to limit each microservice with one
endpoint or multiple endpoints:

Chapter 3

[119]

The number of endpoints is not really a decision point. In some cases, there may
be only one endpoint, whereas in some other cases, there could be more than one
endpoint in a microservice. For instance, consider a sensor data service which
collects sensor information, and has two logical endpoints: create and read. But in
order to handle CQRS, we may create two separate physical microservices as shown
in the case of Booking in the preceding diagram. Polyglot architecture could be
another scenario where we may split endpoints into different microservices.

Considering a notification engine, notifications will be send out in response to an
event. The process of notification such as preparation of data, identification of a
person, and delivery mechanisms, are different for different events. Moreover, we
may want to scale each of these processes differently at different time windows. In
such situations, we may decide to break each notification endpoint in to a separate
microservice.

In yet another example, a Loyalty Points microservice may have multiple services
such as accrue, redeem, transfer, and balance. We may not want to treat each of these
services differently. All of these services are connected and use the points table for
data. If we go with one endpoint per service, we will end up in a situation where
many fine-grained services access data from the same data store or replicated
copies of the same data store.

In short, the number of endpoints is not a design decision. One microservice
may host one or more endpoints. Designing appropriate bounded context for
a microservice is more important.

One microservice per VM or multiple?
One microservice could be deployed in multiple Virtual Machines (VMs) by
replicating the deployment for scalability and availability. This is a no brainer.
The question is whether multiple microservices could be deployed in one virtual
machine? There are pros and cons for this approach. This question typically arises
when the services are simple, and the traffic volume is less.

Consider an example where we have a couple of microservices, and the overall
transaction per minute is less than 10. Also assume that the smallest possible VM size
available is 2-core 8 GB RAM. A further assumption is that in such cases, a 2-core 8
GB VM can handle 10-15 transactions per minute without any performance concerns.
If we use different VMs for each microservice, it may not be cost effective, and we
will end up paying more for infrastructure and license, since many vendors charge
based on the number of cores.

Applying Microservices Concepts

[120]

The simplest way to approach this problem is to ask a few questions:

•	 Does the VM have enough capacity to run both services under peak usage?
•	 Do we want to treat these services differently to achieve SLAs (selective

scaling)? For example, for scalability, if we have an all-in-one VM, we will
have to replicate VMs which replicate all services.

•	 Are there any conflicting resource requirements? For example, different OS
versions, JDK versions, and others.

If all your answers are No, then perhaps we can start with collocated deployment,
until we encounter a scenario to change the deployment topology. However, we
will have to ensure that these services are not sharing anything, and are running
as independent OS processes.

Having said that, in an organization with matured virtualized infrastructure or cloud
infrastructure, this may not be a huge concern. In such environments, the developers
need not worry about where the services are running. Developers may not even think
about capacity planning. Services will be deployed in a compute cloud. Based on the
infrastructure availability, SLAs and the nature of the service, the infrastructure self-
manages deployments. AWS Lambda is a good example of such a service.

Rules engine – shared or embedded?
Rules are an essential part of any system. For example, an offer eligibility service
may execute a number of rules before making a yes or no decision. Either we hand
code rules, or we may use a rules engine. Many enterprises manage rules centrally
in a rules repository as well as execute them centrally. These enterprise rule engines
are primarily used for providing the business an opportunity to author and manage
rules as well as reuse rules from the central repository. Drools is one of the popular
open source rules engines. IBM, FICO, and Bosch are some of the pioneers in the
commercial space. These rule engines improve productivity, enable reuse of rules,
facts, vocabularies, and provide faster rule execution using the rete algorithm.

In the context of microservices, a central rules engine means fanning out calls from
microservices to the central rules engine. This also means that the service logic is now
in two places, some within the service, and some external to the service. Nevertheless,
the objective in the context of microservices is to reduce external dependencies:

Chapter 3

[121]

If the rules are simple enough, few in numbers, only used within the boundaries of
a service, and not exposed to business users for authoring, then it may be better to
hand-code business rules than rely on an enterprise rule engine:

If the rules are complex, limited to a service context, and not given to business users,
then it is better to use an embedded rules engine within the service:

If the rules are managed and authored by business, or if the rules are complex, or if
we are reusing rules from other service domains, then a central authoring repository
with a locally embedded execution engine could be a better choice.

Note that this has to be carefully evaluated since all vendors may not support the
local rule execution approach, and there could be technology dependencies such as
running rules only within a specific application server, and so on.

Role of BPM and workflows
Business Process Management (BPM) and Intelligent Business Process
Management (iBPM) are tool suites for designing, executing, and monitoring
business processes.

Typical use cases for BPM are:

•	 Coordinating a long-running business process, where some processes are
realized by existing assets, whereas some other areas may be niche, and there
is no concrete implementation of the processes being in place. BPM allows
composing both types, and provides an end-to-end automated process. This
often involves systems and human interactions.

Applying Microservices Concepts

[122]

•	 Process-centric organizations, such as those that have implemented Six
Sigma, want to monitor their processes for continuous improvement
on efficiency.

•	 Process re-engineering with a top-down approach by redefining the business
process of an organization.

There could be two scenarios where BPM fits in the microservices world:

The first scenario is business process re-engineering, or threading an end-to-end long
running business process, as stated earlier. In this case, BPM operates at a higher level,
where it may automate a cross-functional, long-running business process by stitching
a number of coarse-grained microservices, existing legacy connectors, and human
interactions. As shown in the preceding diagram, the loan approval BPM invokes
microservices as well as legacy application services. It also integrates human tasks.

In this case, microservices are headless services that implement a subprocess. From
the microservices' perspective, BPM is just another consumer. Care needs to be taken
in this approach to avoid accepting a shared state from a BPM process as well as
moving business logic to BPM:

Chapter 3

[123]

The second scenario is monitoring processes, and optimizing them for efficiency.
This goes hand in hand with a completely automated, asynchronously
choreographed microservices ecosystem. In this case, microservices and BPM work
as independent ecosystems. Microservices send events at various timeframes such
as the start of a process, state changes, end of a process, and so on. These events are
used by the BPM engine to plot and monitor process states. We may not require
a full-fledged BPM solution for this, as we are only mocking a business process
to monitor its efficiency. In this case, the order delivery process is not a BPM
implementation, but it is more of a monitoring dashboard that captures and displays
the progress of the process.

To summarize, BPM could still be used at a higher level for composing multiple
microservices in situations where end-to-end cross-functional business processes
are modeled by automating systems and human interactions. A better and simpler
approach is to have a business process dashboard to which microservices feed state
change events as mentioned in the second scenario.

Can microservices share data stores?
In principle, microservices should abstract presentation, business logic, and data
stores. If the services are broken as per the guidelines, each microservice logically
could use an independent database:

In the preceding diagram, both Product and Order microservices share one
database and one data model. Shared data models, shared schema, and shared
tables are recipes for disasters when developing microservices. This may be good
at the beginning, but when developing complex microservices, we tend to add
relationships between data models, add join queries, and so on. This can result in
tightly coupled physical data models.

Applying Microservices Concepts

[124]

If the services have only a few tables, it may not be worth investing a full instance of
a database like an Oracle database instance. In such cases, a schema level segregation
is good enough to start with:

There could be scenarios where we tend to think of using a shared database for
multiple services. Taking an example of a customer data repository or master
data managed at the enterprise level, the customer registration and customer
segmentation microservices logically share the same customer data repository:

As shown in the preceding diagram, an alternate approach in this scenario is to
separate the transactional data store for microservices from the enterprise data
repository by adding a local transactional data store for these services. This will
help the services to have flexibility in remodeling the local data store optimized for
its purpose. The enterprise customer repository sends change events when there is
any change in the customer data repository. Similarly, if there is any change in any
of the transactional data stores, the changes have to be sent to the central customer
repository.

Chapter 3

[125]

Setting up transaction boundaries
Transactions in operational systems are used to maintain the consistency of data
stored in an RDBMS by grouping a number of operations together into one atomic
block. They either commit or rollback the entire operation. Distributed systems
follow the concept of distributed transactions with a two-phase commit. This is
particularly required if heterogeneous components such as an RPC service, JMS,
and so on participate in a transaction.

Is there a place for transactions in microservices? Transactions are not bad, but one
should use transactions carefully, by analyzing what we are trying do.

For a given microservice, an RDBMS like MySQL may be selected as a backing store
to ensure 100% data integrity, for example, a stock or inventory management service
where data integrity is key. It is appropriate to define transaction boundaries within
the microsystem using local transactions. However, distributed global transactions
should be avoided in the microservices context. Proper dependency analysis is
required to ensure that transaction boundaries do not span across two different
microservices as much as possible.

Altering use cases to simplify transactional
requirements
Eventual consistency is a better option than distributed transactions that span
across multiple microservices. Eventual consistency reduces a lot of overheads,
but application developers may need to re-think the way they write application
code. This could include remodeling functions, sequencing operations to minimize
failures, batching insert and modify operations, remodeling data structure, and
finally, compensating operations that negate the effect.

A classical problem is that of the last room selling scenario in a hotel booking use
case. What if there is only one room left, and there are multiple customers booking
this singe available room? A business model change sometimes makes this scenario
less impactful. We could set an "under booking profile", where the actual number of
bookable rooms can go below the actual number of rooms (bookable = available - 3) in
anticipation of some cancellations. Anything in this range will be accepted as "subject
to confirmation", and customers will be charged only if payment is confirmed.
Bookings will be confirmed in a set time window.

Applying Microservices Concepts

[126]

Now consider the scenario where we are creating customer profiles in a NoSQL
database like CouchDB. In more traditional approaches with RDBMS, we insert
a customer first, and then insert the customer's address, profile details, then
preferences, all in one transaction. When using NoSQL, we may not do the same
steps. Instead, we may prepare a JSON object with all the details, and insert this
into CouchDB in one go. In this second case, no explicit transaction boundaries
are required.

Distributed transaction scenarios
The ideal scenario is to use local transactions within a microservice if required,
and completely avoid distributed transactions. There could be scenarios where at
the end of the execution of one service, we may want to send a message to another
microservice. For example, say a tour reservation has a wheelchair request. Once the
reservation is successful, we will have to send a message for the wheelchair booking
to another microservice that handles ancillary bookings. The reservation request
itself will run on a local transaction. If sending this message fails, we are still in the
transaction boundary, and we can roll back the entire transaction. What if we create
a reservation and send the message, but after sending the message, we encounter
an error in the reservation, the reservation transaction fails, and subsequently,
the reservation record is rolled back? Now we end up in a situation where we've
unnecessarily created an orphan wheelchair booking:

There are a couple of ways we can address this scenario. The first approach is to
delay sending the message till the end. This ensures that there are less chances
for any failure after sending the message. Still, if failure occurs after sending the
message, then the exception handling routine is run, that is, we send a compensating
message to reverse the wheelchair booking.

Chapter 3

[127]

Service endpoint design consideration
One of the important aspects of microservices is service design. Service design has
two key elements: contract design and protocol selection.

Contract design
The first and foremost principle of service design is simplicity. The services should
be designed for consumers to consume. A complex service contract reduces the
usability of the service. The KISS (Keep It Simple Stupid) principle helps us
to build better quality services faster, and reduces the cost of maintenance and
replacement. The YAGNI (You Ain't Gonna Need It) is another principle supporting
this idea. Predicting future requirements and building systems are, in reality, not
future-proofed. This results in large upfront investment as well as higher cost of
maintenance.

Evolutionary design is a great concept. Do just enough design to satisfy today's
wants, and keep changing and refactoring the design to accommodate new features
as and when they are required. Having said that, this may not be simple unless there
is a strong governance in place.

Consumer Driven Contracts (CDC) is a great idea that supports evolutionary
design. In many cases, when the service contract gets changed, all consuming
applications have to undergo testing. This makes change difficult. CDC helps in
building confidence in consumer applications. CDC advocates each consumer to
provide their expectation to the provider in the form of test cases so that the provider
uses them as integration tests whenever the service contract is changed.

Postel's law is also relevant in this scenario. Postel's law primarily addresses TCP
communications; however, this is also equally applicable to service design. When
it comes to service design, service providers should be as flexible as possible when
accepting consumer requests, whereas service consumers should stick to the contract
as agreed with the provider.

Protocol selection
In the SOA world, HTTP/SOAP, and messaging were kinds of default service
protocols for service interactions. Microservices follow the same design principles for
service interaction. Loose coupling is one of the core principles in the microservices
world too.

Microservices fragment applications into many physically independent deployable
services. This not only increases the communication cost, it is also susceptible to
network failures. This could also result in poor performance of services.

Applying Microservices Concepts

[128]

Message-oriented services
If we choose an asynchronous style of communication, the user is disconnected,
and therefore, response times are not directly impacted. In such cases, we may
use standard JMS or AMQP protocols for communication with JSON as payload.
Messaging over HTTP is also popular, as it reduces complexity. Many new entrants
in messaging services support HTTP-based communication. Asynchronous REST is
also possible, and is handy when calling long-running services.

HTTP and REST endpoints
Communication over HTTP is always better for interoperability, protocol handling,
traffic routing, load balancing, security systems, and the like. Since HTTP is stateless,
it is more compatible for handling stateless services with no affinity. Most of the
development frameworks, testing tools, runtime containers, security systems, and so
on are friendlier towards HTTP.

With the popularity and acceptance of REST and JSON, it is the default choice for
microservice developers. The HTTP/REST/JSON protocol stack makes building
interoperable systems very easy and friendly. HATEOAS is one of the design
patterns emerging for designing progressive rendering and self-service navigations.
As discussed in the previous chapter, HATEOAS provides a mechanism to
link resources together so that the consumer can navigate between resources.
RFC 5988 – Web Linking is another upcoming standard.

Optimized communication protocols
If the service response times are stringent, then we need to pay special attention to
the communication aspects. In such cases, we may choose alternate protocols such
as Avro, Protocol Buffers, or Thrift for communicating between services. But this
limits the interoperability of services. The trade-off is between performance and
interoperability requirements. Custom binary protocols need careful evaluation as
they bind native objects on both sides—consumer and producer. This could run into
release management issues such as class version mismatch in Java-based RPC style
communications.

API documentations
Last thing: a good API is not only simple, but should also have enough
documentation for the consumers. There are many tools available today for
documenting REST-based services like Swagger, RAML, and API Blueprint.

Chapter 3

[129]

Handling shared libraries
The principle behind microservices is that they should be autonomous and
self-contained. In order to adhere to this principle, there may be situations where
we will have to duplicate code and libraries. These could be either technical libraries
or functional components.

For example, the eligibility for a flight upgrade will be checked at the time of
check-in as well as when boarding. If check-in and boarding are two different
microservices, we may have to duplicate the eligibility rules in both the services.
This was the trade-off between adding a dependency versus code duplication.

It may be easy to embed code as compared to adding an additional dependency,
as it enables better release management and performance. But this is against the
DRY principle.

DRY principle
Every piece of knowledge must have a single, unambiguous,
authoritative representation within a system.

The downside of this approach is that in case of a bug or an enhancement on the
shared library, it has to be upgraded in more than one place. This may not be a
severe setback as each service can contain a different version of the shared library:

An alternative option of developing the shared library as another microservice
itself needs careful analysis. If it is not qualified as a microservice from the business
capability point of view, then it may add more complexity than its usefulness. The
trade-off analysis is between overheads in communication versus duplicating the
libraries in multiple services.

Applying Microservices Concepts

[130]

User interfaces in microservices
The microservices principle advocates a microservice as a vertical slice from the
database to presentation:

In reality, we get requirements to build quick UI and mobile applications mashing
up the existing APIs. This is not uncommon in the modern scenario, where a
business wants quick turnaround time from IT:

Penetration of mobile applications is one of the causes of this approach. In many
organizations, there will be mobile development teams sitting close to the business
team, developing rapid mobile applications by combining and mashing up APIs
from multiple sources, both internal and external. In such situations, we may just
expose services, and leave it for the mobile teams to realize in the way the business
wants. In this case, we will build headless microservices, and leave it to the mobile
teams to build a presentation layer.

Chapter 3

[131]

Another category of problem is that the business may want to build consolidated
web applications targeted to communities:

For example, the business may want to develop a departure control application
targeting airport users. A departure control web application may have functions
such as check-in, lounge management, boarding, and so on. These may be designed
as independent microservices. But from the business standpoint, it all needs to be
clubbed into a single web application. In such cases, we will have to build web
applications by mashing up services from the backend.

One approach is to build a container web application or a placeholder web
application, which links to multiple microservices at the backend. In this case,
we develop full stack microservices, but the screens coming out of this could be
embedded in to another placeholder web application. One of the advantages of
this approach is that you can have multiple placeholder web applications targeting
different user communities, as shown in the preceding diagram. We may use an API
gateway to avoid those crisscross connections. We will explore the API gateway in
the next section.

Use of API gateways in microservices
With the advancement of client-side JavaScript frameworks like AngularJS, the
server is expected to expose RESTful services. This could lead to two issues. The first
issue is the mismatch in contract expectations. The second issue is multiple calls to
the server to render a page.

Applying Microservices Concepts

[132]

We start with the contract mismatch case. For example, GetCustomer may return
a JSON with many fields:

Customer {
 Name:
 Address:
 Contact:
}

In the preceding case, Name, Address, and Contact are nested JSON objects. But a
mobile client may expect only basic information such as first name, and last name.
In the SOA world, an ESB or a mobile middleware did this job of transformation of
data for the client. The default approach in microservices is to get all the elements of
Customer, and then the client takes up the responsibility to filter the elements. In this
case, the overhead is on the network.

There are several approaches we can think about to solve this case:

Customer {
 Id: 1
 Name: /customer/name/1
 Address: /customer/address/1
 Contact: /customer/contact/1
}

In the first approach, minimal information is sent with links as explained in the
section on HATEOAS. In the preceding case, for customer ID 1, there are three links,
which will help the client to access specific data elements. The example is a simple
logical representation, not the actual JSON. The mobile client in this case will get
basic customer information. The client further uses the links to get the additional
required information.

The second approach is used when the client makes the REST call; it also sends the
required fields as part of the query string. In this scenario, the client sends a request
with firstname and lastname as the query string to indicate that the client only
requires these two fields. The downside is that it ends up in complex server-side
logic as it has to filter based on the fields. The server has to send different elements
based on the incoming query.

The third approach is to introduce a level of indirection. In this, a gateway component
sits between the client and the server, and transforms data as per the consumer's
specification. This is a better approach as we do not compromise on the backend
service contract. This leads to what is called UI services. In many cases, the API
gateway acts as a proxy to the backend, exposing a set of consumer-specific APIs:

Chapter 3

[133]

There are two ways we can deploy an API gateway. The first one is one API gateway
per microservice as shown in diagram A. The second approach (diagram B) is to
have a common API gateway for multiple services. The choice really depends on
what we are looking for. If we are using an API gateway as a reverse proxy, then
off-the-shelf gateways such as Apigee, Mashery, and the like could be used as a
shared platform. If we need fine-grained control over traffic shaping and complex
transformations, then per service custom API gateways may be more useful.

A related problem is that we will have to make many calls from the client to the server.
If we refer to our holiday example in Chapter 1, Demystifying Microservices, you know
that for rendering each widget, we had to make a call to the server. Though we transfer
only data, it can still add a significant overhead on the network. This approach is not
fully wrong, as in many cases, we use responsive design and progressive design. The
data will be loaded on demand, based on user navigations. In order to do this, each
widget in the client should make independent calls to the server in a lazy mode. If
bandwidth is an issue, then an API gateway is the solution. An API gateway acts as a
middleman to compose and transform APIs from multiple microservices.

Use of ESB and iPaaS with microservices
Theoretically, SOA is not all about ESBs, but the reality is that ESBs have always been
at the center of many SOA implementations. What would be the role of an ESB in
the microservices world?

In general, microservices are fully cloud native systems with smaller footprints.
The lightweight characteristics of microservices enable automation of deployments,
scaling, and so on. On the contrary, enterprise ESBs are heavyweight in nature, and
most of the commercial ESBs are not cloud friendly. The key features of an ESB are
protocol mediation, transformation, orchestration, and application adaptors. In a
typical microservices ecosystem, we may not need any of these features.

Applying Microservices Concepts

[134]

The limited ESB capabilities that are relevant for microservices are already available
with more lightweight tools such as an API gateway. Orchestration is moved from
the central bus to the microservices themselves. Therefore, there is no centralized
orchestration capability expected in the case of microservices. Since the services are
set up to accept more universal message exchange styles using REST/JSON calls,
no protocol mediation is required. The last piece of capability that we get from ESBs
are the adaptors to connect back to the legacy systems. In the case of microservices,
the service itself provides a concrete implementation, and hence, there are no legacy
connectors required. For these reasons, there is no natural space for ESBs in the
microservices world.

Many organizations established ESBs as the backbone for their application
integrations (EAI). Enterprise architecture policies in such organizations are built
around ESBs. There could be a number of enterprise-level policies such as auditing,
logging, security, validation, and so on that would have been in place when
integrating using ESB. Microservices, however, advocate a more decentralized
governance. ESBs will be an overkill if integrated with microservices.

Not all services are microservices. Enterprises have legacy applications, vendor
applications, and so on. Legacy services use ESBs to connect with microservices.
ESBs still hold their place for legacy integration and vendor applications to integrate
at the enterprise level.

With the advancement of clouds, the capabilities of ESBs are not sufficient to manage
integration between clouds, cloud to on-premise, and so on. Integration Platform as
a Service (iPaaS) is evolving as the next generation application integration platform,
which further reduces the role of ESBs. In typical deployments, iPaaS invokes API
gateways to access microservices.

Service versioning considerations
When we allow services to evolve, one of the important aspect to consider is
service versioning. Service versioning should be considered upfront, and not as
an afterthought. Versioning helps us to release new services without breaking the
existing consumers. Both the old version and the new version will be deployed
side by side.

Semantic versions are widely used for service versioning. A semantic version has
three components: major, minor, and patch. Major is used when there is a breaking
change, minor is used when there is a backward compatible change, and patch is
used when there is a backward compatible bug fix.

Chapter 3

[135]

Versioning could get complicated when there is more than one service in a
microservice. It is always simple to version services at the service level compared
to the operations level. If there is a change in one of the operations, the service is
upgraded and deployed to V2. The version change is applicable to all operations
in the service. This is the notion of immutable services.

There are three different ways in which we can version REST services:

•	 URI versioning
•	 Media type versioning
•	 Custom header

In URI versioning, the version number is included in the URL itself. In this case,
we just need to be worried about the major versions only. Hence, if there is a minor
version change or a patch, the consumers do not need to worry about the changes.
It is a good practice to alias the latest version to a non-versioned URI, which is done
as follows:

/api/v3/customer/1234
/api/customer/1234 - aliased to v3.

@RestController("CustomerControllerV3")
@RequestMapping("api/v3/customer")
public class CustomerController {

}

A slightly different approach is to use the version number as part of the URL
parameter:

api/customer/100?v=1.5

In case of media type versioning, the version is set by the client on the HTTP Accept
header as follows:

Accept: application/vnd.company.customer-v3+json

A less effective approach for versioning is to set the version in the custom header:

@RequestMapping(value = "/{id}", method = RequestMethod.GET, headers =
{"version=3"})
public Customer getCustomer(@PathVariable("id") long id) {
 //other code goes here.
}

Applying Microservices Concepts

[136]

In the URI approach, it is simple for the clients to consume services. But this has
some inherent issues such as the fact that versioning-nested URI resources could
be complex. Indeed, migrating clients is slightly complex as compared to media
type approaches, with caching issues for multiple versions of the services, and
others. However, these issues are not significant enough for us to not go with a URI
approach. Most of the big Internet players such as Google, Twitter, LinkedIn, and
Salesforce are following the URI approach.

Design for cross origin
With microservices, there is no guarantee that the services will run from the
same host or same domain. Composite UI web applications may call multiple
microservices for accomplishing a task, and these could come from different
domains and hosts.

CORS allows browser clients to send requests to services hosted on different
domains. This is essential in a microservices-based architecture.

One approach is to enable all microservices to allow cross origin requests from other
trusted domains. The second approach is to use an API gateway as a single trusted
domain for the clients.

Handling shared reference data
When breaking large applications, one of the common issues which we see is the
management of master data or reference data. Reference data is more like shared
data required between different microservices. City master, country master, and so
on will be used in many services such as flight schedules, reservations, and others.

There are a few ways in which we can solve this. For instance, in the case of
relatively static, never changing data, then every service can hardcode this data
within all the microservices themselves:

Chapter 3

[137]

Another approach, as shown in the preceding diagram, is to build it as another
microservice. This is good, clean, and neat, but the downside is that every service
may need to call the master data multiple times. As shown in the diagram for the
Search and Booking example, there are transactional microservices, which use the
Geography microservice to access shared data:

Another option is to replicate the data with every microservice. There is no single
owner, but each service has its required master data. When there is an update, all
the services are updated. This is extremely performance friendly, but one has to
duplicate the code in all the services. It is also complex to keep data in sync across all
microservices. This approach makes sense if the code base and data is simple or the
data is more static.

Yet another approach is similar to the first approach, but each service has a local near
cache of the required data, which will be loaded incrementally. A local embedded
cache such as Ehcache or data grids like Hazelcast or Infinispan could also be used
based on the data volumes. This is the most preferred approach for a large number
of microservices that have dependency on the master data.

Applying Microservices Concepts

[138]

Microservices and bulk operations
Since we have broken monolithic applications into smaller, focused services, it is no
longer possible to use join queries across microservice data stores. This could lead to
situations where one service may need many records from other services to perform
its function.

For example, a monthly billing function needs the invoices of many customers
to process the billing. To make it a bit more complicated, invoices may have
many orders. When we break billing, invoices, and orders into three different
microservices, the challenge that arises is that the Billing service has to query the
Invoices service for each customer to get all the invoices, and then for each invoice,
call the Order service for getting the orders. This is not a good solution, as the
number of calls that goes to other microservices are high:

There are two ways we can think about for solving this. The first approach is to
pre-aggregate data as and when it is created. When an order is created, an event
is sent out. Upon receiving the event, the Billing microservice keeps aggregating
data internally for monthly processing. In this case, there is no need for the Billing
microservice to go out for processing. The downside of this approach is that there is
duplication of data.

Chapter 3

[139]

A second approach, when pre-aggregation is not possible, is to use batch APIs. In
such cases, we call GetAllInvoices, then we use multiple batches, and each batch
further uses parallel threads to get orders. Spring Batch is useful in these situations.

Microservices challenges
In the previous section, you learned about the right design decisions to be taken, and
the trade-offs to be applied. In this section, we will review some of the challenges with
microservices, and how to address them for a successful microservice development.

Data islands
Microservices abstract their own local transactional store, which is used for their own
transactional purposes. The type of store and the data structure will be optimized for
the services offered by the microservice.

For example, if we want to develop a customer relationship graph, we may use a
graph database like Neo4j, OrientDB, and the like. A predictive text search to find
out a customer based on any related information such as passport number, address,
e-mail, phone, and so on could be best realized using an indexed search database
like Elasticsearch or Solr.

This will place us into a unique situation of fragmenting data into heterogeneous
data islands. For example, Customer, Loyalty Points, Reservations, and others are
different microservices, and hence, use different databases. What if we want to do a
near real-time analysis of all high value customers by combining data from all three
data stores? This was easy with a monolithic application, because all the data was
present in a single database:

Applying Microservices Concepts

[140]

In order to satisfy this requirement, a data warehouse or a data lake is required.
Traditional data warehouses like Oracle, Teradata, and others are used primarily
for batch reporting. But with NoSQL databases (like Hadoop) and microbatching
techniques, near real-time analytics is possible with the concept of data lakes. Unlike
the traditional warehouses that are purpose-built for batch reporting, data lakes
store raw data without assuming how the data is going to be used. Now the question
really is how to port the data from microservices into data lakes.

Data porting from microservices to a data lake or a data warehouse can be done in
many ways. Traditional ETL could be one of the options. Since we allow backdoor
entry with ETL, and break the abstraction, this is not considered an effective way for
data movement. A better approach is to send events from microservices as and when
they occur, for example, customer registration, customer update events, and so on.
Data ingestion tools consume these events, and propagate the state change to the
data lake appropriately. The data ingestion tools are highly scalable platforms such
as Spring Cloud Data Flow, Kafka, Flume, and so on.

Logging and monitoring
Log files are a good piece of information for analysis and debugging. Since each
microservice is deployed independently, they emit separate logs, maybe to a local disk.
This results in fragmented logs. When we scale services across multiple machines, each
service instance could produce separate log files. This makes it extremely difficult to
debug and understand the behavior of the services through log mining.

Examining Order, Delivery, and Notification as three different microservices, we
find no way to correlate a customer transaction that runs across all three of them:

Chapter 3

[141]

When implementing microservices, we need a capability to ship logs from each
service to a centrally managed log repository. With this approach, services do not
have to rely on the local disk or local I/Os. A second advantage is that the log files
are centrally managed, and are available for all sorts of analysis such as historical,
real time, and trending. By introducing a correlation ID, end-to-end transactions
can be easily tracked.

With a large number of microservices, and with multiple versions and service
instances, it would be difficult to find out which service is running on which server,
what's the health of these services, the service dependencies, and so on. This was
much easier with monolithic applications that are tagged against a specific or a
fixed set of servers.

Apart from understanding the deployment topology and health, it also poses a
challenge in identifying service behaviors, debugging, and identifying hotspots.
Strong monitoring capabilities are required to manage such an infrastructure.

We will cover the logging and monitoring aspects in Chapter 7, Logging and Monitoring
Microservices.

Dependency management
Dependency management is one of the key issues in large microservice deployments.
How do we identify and reduce the impact of a change? How do we know whether
all the dependent services are up and running? How will the service behave if one
of the dependent services is not available?

Too many dependencies could raise challenges in microservices. Four important
design aspects are stated as follows:

•	 Reducing dependencies by properly designing service boundaries.
•	 Reducing impacts by designing dependencies as loosely coupled as possible.

Also, designing service interactions through asynchronous communication
styles.

•	 Tackling dependency issues using patterns such as circuit breakers.
•	 Monitoring dependencies using visual dependency graphs.

Applying Microservices Concepts

[142]

Organization culture
One of the biggest challenges in microservices implementation is the organization
culture. To harness the speed of delivery of microservices, the organization should
adopt Agile development processes, continuous integration, automated QA checks,
automated delivery pipelines, automated deployments, and automatic infrastructure
provisioning.

Organizations following a waterfall development or heavyweight release management
processes with infrequent release cycles are a challenge for microservices development.
Insufficient automation is also a challenge for microservices deployment.

In short, Cloud and DevOps are supporting facets of microservice development.
These are essential for successful microservices implementation.

Governance challenges
Microservices impose decentralized governance, and this is quite in contrast with
the traditional SOA governance. Organizations may find it hard to come up with
this change, and that could negatively impact the microservices development.

There are number of challenges that comes with a decentralized governance model.
How do we understand who is consuming a service? How do we ensure service
reuse? How do we define which services are available in the organization? How
do we ensure enforcement of enterprise polices?

The first thing is to have a set of standards, best practices, and guidelines on how to
implement better services. These should be available to the organization in the form
of standard libraries, tools, and techniques. This ensures that the services developed
are top quality, and that they are developed in a consistent manner.

The second important consideration is to have a place where all stakeholders
can not only see all the services, but also their documentations, contracts, and
service-level agreements. Swagger and API Blueprint are commonly used for
handling these requirements.

Operation overheads
Microservices deployment generally increases the number of deployable units and
virtual machines (or containers). This adds significant management overheads and
increases the cost of operations.

Chapter 3

[143]

With a single application, a dedicated number of containers or virtual machines in
an on-premise data center may not make much sense unless the business benefit is
very high. The cost generally goes down with economies of scale. A large number of
microservices that are deployed in a shared infrastructure which is fully automated
makes more sense, since these microservices are not tagged against any specific
VMs or containers. Capabilities around infrastructure automation, provisioning,
containerized deployment, and so on are essential for large scale microservices
deployments. Without this automation, it would result in a significant operation
overhead and increased cost.

With many microservices, the number of configurable items (CIs) becomes too
high, and the number of servers in which these CIs are deployed might also be
unpredictable. This makes it extremely difficult to manage data in a traditional
Configuration Management Database (CMDB). In many cases, it is more useful
to dynamically discover the current running topology than a statically configured
CMDB-style deployment topology.

Testing microservices
Microservices also pose a challenge for the testability of services. In order to achieve
a full-service functionality, one service may rely on another service, and that, in turn,
on another service—either synchronously or asynchronously. The issue is how do we
test an end-to-end service to evaluate its behavior? The dependent services may or
may not be available at the time of testing.

Service virtualization or service mocking is one of the techniques used for testing
services without actual dependencies. In testing environments, when the services
are not available, mock services can simulate the behavior of the actual service. The
microservices ecosystem needs service virtualization capabilities. However, this may
not give full confidence, as there may by many corner cases that mock services do
not simulate, especially when there are deep dependencies.

Another approach, as discussed earlier, is to use a consumer driven contract.
The translated integration test cases can cover more or less all corner cases of the
service invocation.

Test automation, appropriate performance testing, and continuous delivery
approaches such as A/B testing, future flags, canary testing, blue-green deployments,
and red-black deployments, all reduce the risks of production releases.

Applying Microservices Concepts

[144]

Infrastructure provisioning
As briefly touched on under operation overheads, manual deployment could
severely challenge the microservices rollouts. If a deployment has manual elements,
the deployer or operational administrators should know the running topology,
manually reroute traffic, and then deploy the application one by one till all services
are upgraded. With many server instances running, this could lead to significant
operational overheads. Moreover, the chances of errors are high in this manual
approach.

Microservices require a supporting elastic cloud-like infrastructure which can
automatically provision VMs or containers, automatically deploy applications,
adjust traffic flows, replicate new version to all instances, and gracefully phase
out older versions. The automation also takes care of scaling up elastically by
adding containers or VMs on demand, and scaling down when the load falls
below threshold.

In a large deployment environment with many microservices, we may also need
additional tools to manage VMs or containers that can further initiate or destroy
services automatically.

The microservices capability model
Before we conclude this chapter, we will review a capability model for microservices
based on the design guidelines and common pattern and solutions described in
this chapter.

The following diagram depicts the microservices capability model:

Chapter 3

[145]

The capability model is broadly classified in to four areas:

•	 Core capabilities: These are part of the microservices themselves
•	 Supporting capabilities: These are software solutions supporting core

microservice implementations
•	 Infrastructure capabilities: These are infrastructure level expectations for

a successful microservices implementation
•	 Governance capabilities: These are more of process, people, and reference

information

Core capabilities
The core capabilities are explained as follows:

•	 Service listeners (HTTP/messaging): If microservices are enabled for a
HTTP-based service endpoint, then the HTTP listener is embedded within
the microservices, thereby eliminating the need to have any external
application server requirement. The HTTP listener is started at the time
of the application startup. If the microservice is based on asynchronous
communication, then instead of an HTTP listener, a message listener is
started. Optionally, other protocols could also be considered. There may not
be any listeners if the microservice is a scheduled service. Spring Boot and
Spring Cloud Streams provide this capability.

•	 Storage capability: The microservices have some kind of storage mechanisms
to store state or transactional data pertaining to the business capability. This
is optional, depending on the capabilities that are implemented. The storage
could be either a physical storage (RDBMS such as MySQL; NoSQL such
as Hadoop, Cassandra, Neo 4J, Elasticsearch, and so on), or it could be an
in-memory store (cache like Ehcache, data grids like Hazelcast, Infinispan,
and so on)

•	 Business capability definition: This is the core of microservices, where
the business logic is implemented. This could be implemented in any
applicable language such as Java, Scala, Conjure, Erlang, and so on. All
required business logic to fulfill the function will be embedded within
the microservices themselves.

•	 Event sourcing: Microservices send out state changes to the external world
without really worrying about the targeted consumers of these events.
These events could be consumed by other microservices, audit services,
replication services, or external applications, and the like. This allows other
microservices and applications to respond to state changes.

Applying Microservices Concepts

[146]

•	 Service endpoints and communication protocols: These define the APIs
for external consumers to consume. These could be synchronous endpoints
or asynchronous endpoints. Synchronous endpoints could be based on
REST/JSON or any other protocols such as Avro, Thrift, Protocol Buffers,
and so on. Asynchronous endpoints are through Spring Cloud Streams
backed by RabbitMQ, other messaging servers, or other messaging style
implementations such as ZeroMQ.

•	 API gateway: The API gateway provides a level of indirection by either
proxying service endpoints or composing multiple service endpoints. The
API gateway is also useful for policy enforcements. It may also provide real
time load balancing capabilities. There are many API gateways available
in the market. Spring Cloud Zuul, Mashery, Apigee, and 3scale are some
examples of the API gateway providers.

•	 User interfaces: Generally, user interfaces are also part of microservices for
users to interact with the business capabilities realized by the microservices.
These could be implemented in any technology, and are channel- and
device-agnostic.

Infrastructure capabilities
Certain infrastructure capabilities are required for a successful deployment, and
managing large scale microservices. When deploying microservices at scale, not
having proper infrastructure capabilities can be challenging, and can lead to failures:

•	 Cloud: Microservices implementation is difficult in a traditional data center
environment with long lead times to provision infrastructures. Even a large
number of infrastructures dedicated per microservice may not be very cost
effective. Managing them internally in a data center may increase the cost
of ownership and cost of operations. A cloud-like infrastructure is better
for microservices deployment.

•	 Containers or virtual machines: Managing large physical machines is not
cost effective, and they are also hard to manage. With physical machines, it
is also hard to handle automatic fault tolerance. Virtualization is adopted by
many organizations because of its ability to provide optimal use of physical
resources. It also provides resource isolation. It also reduces the overheads in
managing large physical infrastructure components. Containers are the next
generation of virtual machines. VMWare, Citrix, and so on provide virtual
machine technologies. Docker, Drawbridge, Rocket, and LXD are some of
the containerizer technologies.

Chapter 3

[147]

•	 Cluster control and provisioning: Once we have a large number of
containers or virtual machines, it is hard to manage and maintain
them automatically. Cluster control tools provide a uniform operating
environment on top of the containers, and share the available capacity across
multiple services. Apache Mesos and Kubernetes are examples of cluster
control systems.

•	 Application lifecycle management: Application lifecycle management
tools help to invoke applications when a new container is launched, or
kill the application when the container shuts down. Application life cycle
management allows for script application deployments and releases. It
automatically detects failure scenario, and responds to those failures thereby
ensuring the availability of the application. This works in conjunction with
the cluster control software. Marathon partially addresses this capability.

Supporting capabilities
Supporting capabilities are not directly linked to microservices, but they are essential
for large scale microservices development:

•	 Software defined load balancer: The load balancer should be smart enough
to understand the changes in the deployment topology, and respond
accordingly. This moves away from the traditional approach of configuring
static IP addresses, domain aliases, or cluster addresses in the load balancer.
When new servers are added to the environment, it should automatically
detect this, and include them in the logical cluster by avoiding any manual
interactions. Similarly, if a service instance is unavailable, it should take it out
from the load balancer. A combination of Ribbon, Eureka, and Zuul provide
this capability in Spring Cloud Netflix.

•	 Central log management: As explored earlier in this chapter, a capability is
required to centralize all logs emitted by service instances with the correlation
IDs. This helps in debugging, identifying performance bottlenecks, and
predictive analysis. The result of this is fed back into the life cycle manager
to take corrective actions.

•	 Service registry: A service registry provides a runtime environment for
services to automatically publish their availability at runtime. A registry
will be a good source of information to understand the services topology at
any point. Eureka from Spring Cloud, Zookeeper, and Etcd are some of the
service registry tools available.

Applying Microservices Concepts

[148]

•	 Security service: A distributed microservices ecosystem requires a central
server for managing service security. This includes service authentication
and token services. OAuth2-based services are widely used for microservices
security. Spring Security and Spring Security OAuth are good candidates for
building this capability.

•	 Service configuration: All service configurations should be externalized as
discussed in the Twelve-Factor application principles. A central service for
all configurations is a good choice. Spring Cloud Config server, and Archaius
are out-of-the-box configuration servers.

•	 Testing tools (anti-fragile, RUM, and so on): Netflix uses Simian Army for
anti-fragile testing. Matured services need consistent challenges to see the
reliability of the services, and how good fallback mechanisms are. Simian
Army components create various error scenarios to explore the behavior of
the system under failure scenarios.

•	 Monitoring and dashboards: Microservices also require a strong monitoring
mechanism. This is not just at the infrastructure-level monitoring but also
at the service level. Spring Cloud Netflix Turbine, Hysterix Dashboard, and
the like provide service level information. End-to-end monitoring tools like
AppDynamic, New Relic, Dynatrace, and other tools like statd, Sensu, and
Spigo could add value to microservices monitoring.

•	 Dependency and CI management: We also need tools to discover runtime
topologies, service dependencies, and to manage configurable items. A
graph-based CMDB is the most obvious tool to manage these scenarios.

•	 Data lake: As discussed earlier in this chapter, we need a mechanism to
combine data stored in different microservices, and perform near real-time
analytics. A data lake is a good choice for achieving this. Data ingestion tools
like Spring Cloud Data Flow, Flume, and Kafka are used to consume data.
HDFS, Cassandra, and the like are used for storing data.

•	 Reliable messaging: If the communication is asynchronous, we may need
a reliable messaging infrastructure service such as RabbitMQ or any other
reliable messaging service. Cloud messaging or messaging as a service is a
popular choice in Internet scale message-based service endpoints.

Process and governance capabilities
The last piece in the puzzle is the process and governance capabilities that are
required for microservices:

•	 DevOps: The key to successful implementation of microservices is to adopt
DevOps. DevOps compliment microservices development by supporting
Agile development, high velocity delivery, automation, and better change
management.

Chapter 3

[149]

•	 DevOps tools: DevOps tools for Agile development, continuous integration,
continuous delivery, and continuous deployment are essential for successful
delivery of microservices. A lot of emphasis is required on automated
functioning, real user testing, synthetic testing, integration, release, and
performance testing.

•	 Microservices repository: A microservices repository is where the versioned
binaries of microservices are placed. These could be a simple Nexus
repository or a container repository such as a Docker registry.

•	 Microservice documentation: It is important to have all microservices
properly documented. Swagger or API Blueprint are helpful in achieving
good microservices documentation.

•	 Reference architecture and libraries: The reference architecture provides a
blueprint at the organization level to ensure that the services are developed
according to certain standards and guidelines in a consistent manner. Many
of these could then be translated to a number of reusable libraries that
enforce service development philosophies.

Summary
In this chapter, you learned about handling practical scenarios that will arise in
microservices development.

You learned various solution options and patterns that could be applied to
solve common microservices problems. We reviewed a number of challenges
when developing large scale microservices, and how to address those challenges
effectively.

We also built a capability reference model for a microservices-based ecosystem.
The capability model helps in addressing gaps when building Internet scale
microservices. The capability model learned in this chapter will be the backbone
for this book. The remaining chapters will deep dive into the capability model.

In the next chapter, we will take a real-world problem and model it using the
microservices architecture to see how to translate our learnings into practice.

[151]

Microservices Evolution – A
Case Study

Like SOA, a microservices architecture can be interpreted differently by different
organizations, based on the problem in hand. Unless a sizable, real world problem
is examined in detail, microservices concepts are hard to understand.

This chapter will introduce BrownField Airline (BF), a fictitious budget airline, and
their journey from a monolithic Passenger Sales and Service (PSS) application
to a next generation microservices architecture. This chapter examines the PSS
application in detail, and explains the challenges, approach, and transformation
steps of a monolithic system to a microservices-based architecture, adhering to the
principles and practices that were explained in the previous chapter.

The intention of this case study is to get us as close as possible to a live scenario so
that the architecture concepts can be set in stone.

By the end of this chapter, you will have learned about the following:

•	 A real world case for migrating monolithic systems to microservices-based
ones, with the BrownField Airline's PSS application as an example

•	 Various approaches and transition strategies for migrating a monolithic
application to microservices

•	 Designing a new futuristic microservices system to replace the PSS
application using Spring Framework components

Microservices Evolution – A Case Study

[152]

Reviewing the microservices capability
model
The examples in this chapter explore the following microservices capabilities
from the microservices capability model discussed in Chapter 3, Applying
Microservices Concepts:

•	 HTTP Listener
•	 Message Listener
•	 Storage Capabilities (Physical/In-Memory)
•	 Business Capability Definitions
•	 Service Endpoints & Communication Protocols
•	 User Interfaces
•	 Security Service
•	 Microservice Documentation

Chapter 4

[153]

In Chapter 2, Building Microservices with Spring Boot, we explored all these capabilities
in isolation including how to secure Spring Boot microservices. This chapter will
build a comprehensive microservices example based on a real world case study.

The full source code of this chapter is available under the
Chapter 4 projects in the code files.

Understanding the PSS application
BrownField Airline is one of the fastest growing low-cost, regional airlines,
flying directly to more than 100 destinations from its hub. As a start-up airline,
BrownField Airline started its operations with few destinations and few aircrafts.
BrownField developed its home-grown PSS application to handle their passenger
sales and services.

Business process view
This use case is considerably simplified for discussion purposes. The process view
in the following diagram shows BrownField Airline's end-to-end passenger services
operations covered by the current PSS solution:

The current solution is automating certain customer-facing functions as well as
certain internally facing functions. There are two internally facing functions,
Pre-flight and Post-flight. Pre-flight functions include the planning phase, used for
preparing flight schedules, plans, aircrafts, and so on. Post-flight functions are used
by the back office for revenue management, accounting, and so on. The Search and
Reserve functions are part of the online seat reservation process, and the Check-in
function is the process of accepting passengers at the airport. The Check-in function
is also accessible to the end users over the Internet for online check-in.

Microservices Evolution – A Case Study

[154]

The cross marks at the beginning of the arrows in the preceding diagram indicate
that they are disconnected, and occur at different timelines. For example, passengers
are allowed to book 360 days in advance, whereas the check-in generally happens 24
hours before flight departure.

Functional view
The following diagram shows the functional building blocks of BrownField Airline's
PSS landscape. Each business process and its related subfunctions are represented in
a row:

Each subfunction shown in the preceding diagram explains its role in the overall
business process. Some subfunctions participate in more than one business process.
For example, inventory is used in both search as well as in booking. To avoid any
complication, this is not shown in the diagram. Data management and cross-cutting
subfunctions are used across many business functions.

Architectural view
In order to effectively manage the end-to-end passenger operations, BrownField had
developed an in-house PSS application, almost ten years back. This well-architected
application was developed using Java and JEE technologies combined with the best-
of-the-breed open source technologies available at the time.

Chapter 4

[155]

The overall architecture and technologies are shown in the following diagram:

The architecture has well-defined boundaries. Also, different concerns are separated
into different layers. The web application was developed as an N-tier, component-
based modular system. The functions interact with each other through well-defined
service contracts defined in the form of EJB endpoints.

Design view
The application has many logical functional groupings or subsystems. Further, each
subsystem has many components organized as depicted in the next diagram:

Subsystems interact with each other through remote EJB calls using the IIOP
protocol. The transactional boundaries span across subsystems. Components
within the subsystems communicate with each other through local EJB component
interfaces. In theory, since subsystems use remote EJB endpoints, they could run on
different physically separated application servers. This was one of the design goals.

Microservices Evolution – A Case Study

[156]

Implementation view
The implementation view in the following diagram showcases the internal
organization of a subsystem and its components. The purpose of the diagram is also
to show the different types of artifacts:

In the preceding diagram, the gray-shaded boxes are treated as different Maven
projects, and translate into physical artifacts. Subsystems and components are
designed adhering to the program to an interface principle. Interfaces are packaged
as separate JAR files so that clients are abstracted from the implementations. The
complexity of the business logic is buried in the domain model. Local EJBs are used
as component interfaces. Finally, all subsystems are packaged into a single all-in-one
EAR, and deployed in the application server.

Chapter 4

[157]

Deployment view
The application's initial deployment was simple and straightforward as shown in
the next diagram:

The web modules and business modules were deployed into separate application
server clusters. The application was scaled horizontally by adding more and more
application servers to the cluster.

Zero downtime deployments were handled by creating a standby cluster, and
gracefully diverting the traffic to that cluster. The standby cluster is destroyed once
the primary cluster is patched with the new version and brought back to service.
Most of the database changes were designed for backward compatibility, but
breaking changes were promoted with application outages.

Microservices Evolution – A Case Study

[158]

Death of the monolith
The PSS application was performing well, successfully supporting all business
requirements as well as the expected service levels. The system had no issues in
scaling with the organic growth of the business in the initial years.

The business has seen tremendous growth over a period of time. The fleet size
increased significantly, and new destinations got added to the network. As a result of
this rapid growth, the number of bookings has gone up, resulting in a steep increase
in transaction volumes, up to 200 - to 500 - fold of what was originally estimated.

Pain points
The rapid growth of the business eventually put the application under pressure. Odd
stability issues and performance issues surfaced. New application releases started
breaking the working code. Moreover, the cost of change and the speed of delivery
started impacting the business operations profoundly.

An end-to-end architecture review was ordered, and it exposed the weaknesses of
the system as well as the root causes of many failures, which were as follows:

•	 Stability: The stability issues are primarily due to stuck threads, which limit
the application server's capability to accept more transactions. The stuck
threads are mainly due to database table locks. Memory issues are another
contributor to the stability issues. There were also issues in certain resource
intensive operations that were impacting the whole application.

•	 Outages: The outage window increased largely because of the increase in
server startup time. The root cause of this issue boiled down to the large size
of the EAR. Message pile up during any outage windows causes heavy usage
of the application immediately after an outage window. Since everything
is packaged in a single EAR, any small application code change resulted in
full redeployment. The complexity of the zero downtime deployment model
described earlier, together with the server startup times increased both the
number of outages and their duration.

•	 Agility: The complexity of the code also increased considerably over time,
partially due to the lack of discipline in implementing the changes. As a
result, changes became harder to implement. Also, the impact analysis
became too complex to perform. As a result, inaccurate impact analysis often
led to fixes that broke the working code. The application build time went
up severely, from a few minutes to hours, causing unacceptable drops in
development productivity. The increase in build time also led to difficulty in
build automation, and eventually stopped continuous integration (CI) and
unit testing.

Chapter 4

[159]

Stop gap fix
Performance issues were partially addressed by applying the Y-axis scale method
in the scale cube, as described in Chapter 1, Demystifying Microservices. The all-
encompassing EAR is deployed into multiple disjoint clusters. A software proxy
was installed to selectively route the traffic to designated clusters as shown in the
following diagram:

This helped BrownField's IT to scale the application servers. Therefore, the stability
issues were controlled. However, this soon resulted in a bottleneck at the database
level. Oracle's Real Application Cluster (RAC) was implemented as a solution to
this problem at the database layer.

This new scaling model reduced the stability issues, but at a premium of increased
complexity and cost of ownership. The technology debt also increased over a period
of time, leading to a state where a complete rewrite was the only option for reducing
this technology debt.

Microservices Evolution – A Case Study

[160]

Retrospection
Although the application was well-architected, there was a clear segregation between
the functional components. They were loosely coupled, programmed to interfaces,
with access through standards-based interfaces, and had a rich domain model.

The obvious question is, how come such a well-architected application failed to live
up to the expectations? What else could the architects have done?

It is important to understand what went wrong over a period of time. In the context
of this book, it is also important to understand how microservices can avoid the
recurrence of these scenarios. We will examine some of these scenarios in the
subsequent sections.

Shared data
Almost all functional modules require reference data such as the airline's details,
airplane details, a list of airports and cities, countries, currencies, and so on. For
example, fare is calculated based on the point of origin (city), a flight is between an
origin and a destination (airports), check-in is at the origin airport (airport), and so
on. In some functions, the reference data is a part of the information model, whereas
in some other functions, it is used for validation purposes.

Much of this reference data is neither fully static nor fully dynamic. Addition of
a country, city, airport, or the like could happen when the airline introduces new
routes. Aircraft reference data could change when the airline purchases a new
aircraft, or changes an existing airplane's seat configuration.

One of the common usage scenarios of reference data is to filter the operational data
based on certain reference data. For instance, say a user wishes to see all the flights to
a country. In this case, the flow of events could be as follows: find all the cities in the
selected country, then all airports in the cities, and then fire a request to get all the
flights to the list of resulting airports identified in that country.

The architects considered multiple approaches when designing the system.
Separating the reference data as an independent subsystem like other subsystems
was one of the options considered, but this could lead to performance issues. The
team took the decision to follow an exception approach for handling reference data
as compared to other transactions. Considering the nature of the query patterns
discussed earlier, the approach was to use the reference data as a shared library.

Chapter 4

[161]

In this case, the subsystems were allowed to access the reference data directly using
pass-by-reference semantic data instead of going through the EJB interfaces. This also
meant that irrespective of the subsystems, hibernate entities could use the reference
data as a part of their entity relationships:

As depicted in the preceding diagram, the Booking entity in the reservation
subsystem is allowed to use the reference data entities, in this case Airport,
as part of their relationships.

Single database
Though enough segregation was enforced at the middle tier, all functions pointed to
a single database, even to the same database schema. The single schema approach
opened a plethora of issues.

Native queries
The Hibernate framework provides a good abstraction over the underlying
databases. It generates efficient SQL statements, in most of the cases targeting the
database using specific dialects. However, sometimes, writing native JDBC SQLs
offers better performance and resource efficiency. In some cases, using native
database functions gives an even better performance.

The single database approach worked well at the beginning. But over a period of
time, it opened up a loophole for the developers by connecting database tables
owned by different subsystems. Native JDBC SQL was a good vehicle for doing this.

Microservices Evolution – A Case Study

[162]

The following diagram shows an example of connecting two tables owned by two
subsystems using a native JDBC SQL:

As shown in the preceding diagram, the Accounting component requires all
booking records for a day, for a given city, from the Booking component to process
the day-end billing. The subsystem-based design enforces Accounting to make
a service call to Booking to get all booking records for a given city. Assume this
results in N booking records. Now, for each booking record, Accounting has to
execute a database call to find the applicable rules based on the fare code attached
to each booking record. This could result in N+1 JDBC calls, which is inefficient.
Workarounds, such as batch queries or parallel and batch executions, are available,
but this would lead to increased coding efforts and higher complexity. The
developers tackled this issue with a native JDBC query as an easy-to-implement
shortcut. Essentially, this approach could reduce the number of calls from N+1 to a
single database call, with minimal coding efforts.

This habit continued with many JDBC native queries connecting tables across
multiple components and subsystems. This resulted not only in tightly coupled
components, but also led to undocumented, hard-to-detect code.

Chapter 4

[163]

Stored procedures
Another issue that surfaced as a result of the use of a single database was the use of
complex stored procedures. Some of the complex data-centric logic written at the
middle layer was not performing well, causing slow response, memory issues, and
thread-blocking issues.

In order to address this problem, the developers took the decision to move some of
the complex business logic from the middle tier to the database tier by implementing
the logic directly within the stored procedures. This decision resulted in better
performance of some of the transactions, and removed some of the stability issues.
More and more procedures were added over a period of time. However, this
eventually broke the application's modularity.

Domain boundaries
Though the domain boundaries were well established, all the components were
packaged as a single EAR file. Since all the components were set to run on a single
container, there was no stopping the developers referencing objects across these
boundaries. Over a period of time, the project teams changed, delivery pressure
increased, and the complexity grew tremendously. The developers started looking
for quick solutions rather than the right ones. Slowly, but steadily, the modular
nature of the application went away.

As depicted in the following diagram, hibernate relationships were created across
subsystem boundaries:

Microservices Evolution – A Case Study

[164]

Microservices to the rescue
There are not many improvement opportunities left to support the growing demand
of BrownField Airline's business. BrownField Airline was looking to re-platform the
system with an evolutionary approach rather than a revolutionary model.

Microservices is an ideal choice in these situations—for transforming a legacy
monolithic application with minimal disruption to the business:

As shown in the preceding diagram, the objective is to move to a microservices-
based architecture aligned to the business capabilities. Each microservice will hold
the data store, the business logic, and the presentation layer.

The approach taken by BrownField Airline is to build a number of web portal
applications targeting specific user communities such as customer facing, front office,
and back office. The advantage of this approach lies in the flexibility for modeling,
and also in the possibility to treat different communities differently. For example,
the policies, architecture, and testing approaches for the Internet facing layer are
different from the intranet-facing web application. Internet-facing applications may
take advantage of CDNs (Content Delivery Networks) to move pages as close to the
customer as possible, whereas intranet applications could serve pages directly from
the data center.

Chapter 4

[165]

The business case
When building business cases for migration, one of the commonly asked questions
is "how does the microservices architecture avoid resurfacing of the same issues in
another five years' time?"

Microservices offers a full list of benefits, which you learned in Chapter 1,
Demystifying Microservices, but it is important to list a few here that are critical
in this situation:

•	 Service dependencies: While migrating from monolithic applications to
microservices, the dependencies are better known, and therefore the architects
and developers are much better placed to avoid breaking dependencies and
to future-proof dependency issues. Lessons from the monolithic application
helps architects and developers to design a better system.

•	 Physical boundaries: Microservices enforce physical boundaries in all areas
including the data store, the business logic, and the presentation layer.
Access across subsystems or microservices are truly restricted due to their
physical isolation. Beyond the physical boundaries, they could even run on
different technologies.

•	 Selective scaling: Selective scale out is possible in microservices architecture.
This provides a much more cost-effective scaling mechanism compared to
the Y-scale approach used in the monolithic scenario.

•	 Technology obsolescence: Technology migrations could be applied at a
microservices level rather than at the overall application level. Therefore,
it does not require a humongous investment.

Plan the evolution
It is not simple to break an application that has millions of lines of code, especially if
the code has complex dependencies. How do we break it? More importantly, where
do we start, and how do we approach this problem?

Microservices Evolution – A Case Study

[166]

Evolutionary approach
The best way to address this problem is to establish a transition plan, and gradually
migrate the functions as microservices. At every step, a microservice will be created
outside of the monolithic application, and traffic will be diverted to the new service
as shown in the following diagram:

In order to run this migration successfully, a number of key questions need to be
answered from the transition point of view:

•	 Identification of microservices' boundaries
•	 Prioritizing microservices for migration
•	 Handling data synchronization during the transition phase
•	 Handling user interface integration, working with old and new user

interfaces

Chapter 4

[167]

•	 Handling of reference data in the new system
•	 Testing strategy to ensure the business capabilities are intact and correctly

reproduced
•	 Identification of any prerequisites for microservice development such as

microservices capabilities, frameworks, processes, and so on

Identification of microservices boundaries
The first and foremost activity is to identify the microservices' boundaries. This
is the most interesting part of the problem, and the most difficult part as well. If
identification of the boundaries is not done properly, the migration could lead to
more complex manageability issues.

Like in SOA, a service decomposition is the best way to identify services. However,
it is important to note that decomposition stops at a business capability or bounded
context. In SOA, service decomposition goes further into an atomic, granular service
level.

A top-down approach is typically used for domain decomposition. The bottom-up
approach is also useful in the case of breaking an existing system, as it can utilize
a lot of practical knowledge, functions, and behaviors of the existing monolithic
application.

The previous decomposition step will give a potential list of microservices. It is
important to note that this isn't the final list of microservices, but it serves as a good
starting point. We will run through a number of filtering mechanisms to get to a
final list. The first cut of functional decomposition will, in this case, be similar to the
diagram shown under the functional view introduced earlier in this chapter.

Analyze dependencies
The next step is to analyze the dependencies between the initial set of candidate
microservices that we created in the previous section. At the end of this activity,
a dependency graph will be produced.

A team of architects, business analysts, developers, release
management and support staff is required for this exercise.

Microservices Evolution – A Case Study

[168]

One way to produce a dependency graph is to list out all the components of the
legacy system and overlay dependencies. This could be done by combining one or
more of the approaches listed as follows:

•	 Analyzing the manual code and regenerating dependencies.
•	 Using the experience of the development team to regenerate dependencies.
•	 Using a Maven dependency graph. There are a number of tools we could use

to regenerate the dependency graph, such as PomExplorer, PomParser, and
so on.

•	 Using performance engineering tools such as AppDynamics to identify the
call stack and roll up dependencies.

Let us assume that we reproduce the functions and their dependencies as shown in
the following diagram:

Chapter 4

[169]

There are many dependencies going back and forth between different modules.
The bottom layer shows cross-cutting capabilities that are used across multiple
modules. At this point, the modules are more like spaghetti than autonomous units.

The next step is to analyze these dependencies, and come up with a better, simplified
dependency map.

Events as opposed to query
Dependencies could be query-based or event-based. Event-based is better for
scalable systems. Sometimes, it is possible to convert query-based communications
to event-based ones. In many cases, these dependencies exist because either the
business organizations are managed like that, or by virtue of the way the old system
handled the business scenario.

From the previous diagram, we can extract the Revenue Management and the
Fares services:

Revenue Management is a module used for calculating optimal fare values, based
on the booking demand forecast. In case of a fare change between an origin and a
destination, Update Fare on the Fare module is called by Revenue Management to
update the respective fares in the Fare module.

An alternate way of thinking is that the Fare module is subscribed to Revenue
Management for any changes in fares, and Revenue Management publishes
whenever there is a fare change. This reactive programming approach gives an
added flexibility by which the Fares and the Revenue Management modules could
stay independent, and connect them through a reliable messaging system. This same
pattern could be applied in many other scenarios from Check-In to the Loyalty and
Boarding modules.

Next, examine the scenario of CRM and Booking:

Microservices Evolution – A Case Study

[170]

This scenario is slightly different from the previously explained scenario. The CRM
module is used to manage passenger complaints. When CRM receives a complaint,
it retrieves the corresponding passenger's Booking data. In reality, the number of
complaints are negligibly small when compared to the number of bookings. If we
blindly apply the previous pattern where CRM subscribes to all bookings, we will
find that it is not cost effective:

Examine another scenario between the Check-in and Booking modules. Instead of
Check-in calling the Get Bookings service on Booking, can Check-in listen to booking
events? This is possible, but the challenge here is that a booking can happen 360
days in advance, whereas Check-in generally starts only 24 hours before the fight
departure. Duplicating all bookings and booking changes in the Check-in module
360 days in advance would not be a wise decision as Check-in does not require this
data until 24 hours before the flight departure.

An alternate option is that when check-in opens for a flight (24 hours before
departure), Check-in calls a service on the Booking module to get a snapshot of the
bookings for a given flight. Once this is done, Check-in could subscribe for booking
events specifically for that flight. In this case, a combination of query-based as well as
event-based approaches is used. By doing so, we reduce the unnecessary events and
storage apart from reducing the number of queries between these two services.

In short, there is no single policy that rules all scenarios. Each scenario requires
logical thinking, and then the most appropriate pattern is applied.

Events as opposed to synchronous updates
Apart from the query model, a dependency could be an update transaction as well.
Consider the scenario between Revenue Management and Booking:

Chapter 4

[171]

In order to do a forecast and analysis of the current demand, Revenue Management
requires all bookings across all flights. The current approach, as depicted in the
dependency graph, is that Revenue Management has a schedule job that calls Get
Booking on Booking to get all incremental bookings (new and changed) since the last
synchronization.

An alternative approach is to send new bookings and the changes in bookings
as soon as they take place in the Booking module as an asynchronous push. The
same pattern could be applied in many other scenarios such as from Booking to
Accounting, from Flight to Inventory, and also from Flight to Booking. In this
approach, the source service publishes all state-change events to a topic. All
interested parties could subscribe to this event stream and store locally. This
approach removes many hard wirings, and keeps the systems loosely coupled.

The dependency is depicted in the next diagram:

In this case depicted in the preceding diagram, we changed both dependencies and
converted them to asynchronous events.

One last case to analyze is the Update Inventory call from the Booking module to the
Inventory module:

Microservices Evolution – A Case Study

[172]

When a booking is completed, the inventory status is updated by depleting the
inventory stored in the Inventory service. For example, when there are 10 economy
class seats available, at the end of the booking, we have to reduce it to 9. In the
current system, booking and updating inventory are executed within the same
transaction boundaries. This is to handle a scenario in which there is only one seat
left, and multiple customers are trying to book. In the new design, if we apply the
same event-driven pattern, sending the inventory update as an event to Inventory
may leave the system in an inconsistent state. This needs further analysis, which we
will address later in this chapter.

Challenge requirements
In many cases, the targeted state could be achieved by taking another look at the
requirements:

There are two Validate Flight calls, one from Booking and another one from the
Search module. The Validate Flight call is to validate the input flight data coming
from different channels. The end objective is to avoid incorrect data stored or serviced.
When a customer does a flight search, say "BF100", the system validates this flight to
see the following things:

•	 Whether this is a valid flight?
•	 Whether the flight exists on that particular date?
•	 Are there any booking restrictions set on this flight?

Chapter 4

[173]

An alternate way of solving this is to adjust the inventory of the flight based on
these given conditions. For example, if there is a restriction on the flight, update the
inventory as zero. In this case, the intelligence will remain with Flight, and it keeps
updating the inventory. As far as Search and Booking are concerned, both just look
up the inventory instead of validating flights for every request. This approach is
more efficient as compared to the original approach.

Next we will review the Payment use case. Payment is typically a disconnected
function due to the nature of security constraints such as PCIDSS-like standards. The
most obvious way to capture a payment is to redirect a browser to a payment page
hosted in the Payment service. Since card handling applications come under the
purview of PCIDSS, it is wise to remove any direct dependencies from the Payment
service. Therefore, we can remove the Booking-to-Payment direct dependency, and
opt for a UI-level integration.

Challenge service boundaries
In this section, we will review some of the service boundaries based on the
requirements and dependency graph, considering Check-in and its dependencies to
Seating and Baggage.

The Seating function runs a few algorithms based on the current state of the seat
allocation in the airplane, and finds out the best way to position the next passenger
so that the weight and balance requirements can be met. This is based on a number
of predefined business rules. However, other than Check-in, no other module is
interested in the Seating function. From a business capability perspective, Seating is
just a function of Check-in, not a business capability by itself. Therefore, it is better to
embed this logic inside Check-in itself.

The same is applicable to Baggage as well. BrownField has a separate baggage
handling system. The Baggage function in the PSS context is to print the baggage tag
as well as store the baggage data against the Check-in records. There is no business
capability associated with this particular functionality. Therefore, it is ideal to move
this function to Check-in itself.

Microservices Evolution – A Case Study

[174]

The Book, Search, and Inventory functions, after redesigning, are shown in the
following diagram:

Similarly, Inventory and Search are more supporting functions of the Booking
module. They are not aligned with any of the business capabilities as such. Similar to
the previous judgement, it is ideal to move both the Search and Inventory functions
to Booking. Assume, for the time being, that Search, Inventory, and Booking are
moved to a single microservice named Reservation.

As per the statistics of BrownField, search transactions are 10 times more
frequent than the booking transactions. Moreover, search is not a revenue-generating
transaction when compared to booking. Due to these reasons, we need different
scalability models for search and booking. Booking should not get impacted if
there is a sudden surge of transactions in search. From the business point of view,
dropping a search transaction in favor of saving a valid booking transaction is
more acceptable.

Chapter 4

[175]

This is an example of a polyglot requirement, which overrules the business capability
alignment. In this case, it makes more sense to have Search as a service separate
from the Booking service. Let us assume that we remove Search. Only Inventory and
Booking remain under Reservation. Now Search has to hit back to Reservation to
perform inventory searches. This could impact the booking transactions:

A better approach is to keep Inventory along with the Booking module, and keep a
read-only copy of the inventory under Search, while continuously synchronizing the
inventory data over a reliable messaging system. Since both Inventory and Booking
are collocated, this will also solve the need to have two-phase commits. Since both of
them are local, they could work well with local transactions.

Let us now challenge the Fare module design. When a customer searches for a
flight between A and B for a given date, we would like to show the flights and fares
together. That means that our read-only copy of inventory can also combine both
fares as well as inventory. Search will then subscribe to Fare for any fare change
events. The intelligence still stays with the Fare service, but it keeps sending fare
updates to the cached fare data under Search.

Microservices Evolution – A Case Study

[176]

Final dependency graph
There are still a few synchronized calls, which, for the time being, we will keep as
they are.

By applying all these changes, the final dependency diagram will look like the
following one:

Now we can safely consider each box in the preceding diagram as a microservice.
We have nailed down many dependencies, and modeled many of them as
asynchronous as well. The overall system is more or less designed in the reactive style.
There are still some synchronized calls shown in the diagram with bold lines, such as
Get Bulk from Check-In, Get Booking from CRM, and Get Fare from Booking. These
synchronous calls are essentially required as per the trade-off analysis.

Chapter 4

[177]

Prioritizing microservices for migration
We have identified a first-cut version of our microservices-based architecture. As the
next step, we will analyze the priorities, and identify the order of migration. This
could be done by considering multiple factors explained as follows:

•	 Dependency: One of the parameters for deciding the priority is the
dependency graph. From the service dependency graph, services with less
dependency or no dependency at all are easy to migrate, whereas complex
dependencies are way harder. Services with complex dependencies will also
need dependent modules to be migrated along with them.
Accounting, Loyalty, CRM, and Boarding have less dependencies as
compared to Booking and Check-in. Modules with high dependencies will
also have higher risks in their migration.

•	 Transaction volume: Another parameter that can be applied is analyzing the
transaction volumes. Migrating services with the highest transaction volumes
will relieve the load on the existing system. This will have more value from
an IT support and maintenance perspective. However, the downside of this
approach is the higher risk factor.
As stated earlier, Search requests are ten times higher in volume as compared
to Booking requests. Requests for Check-in are the third-highest in volume
transaction after Search and Booking.

•	 Resource utilization: Resource utilization is measured based on the current
utilizations such as CPU, memory, connection pools, thread pools, and so on.
Migrating resource intensive services out of the legacy system provides relief
to other services. This helps the remaining modules to function better.
Flight, Revenue Management, and Accounting are resource-intensive
services, as they involve data-intensive transactions such as forecasting,
billing, flight schedule changes, and so on.

•	 Complexity: Complexity is perhaps measured in terms of the business logic
associated with a service such as function points, lines of code, number of
tables, number of services, and others. Less complex modules are easy to
migrate as compared to the more complex ones.
Booking is extremely complex as compared to the Boarding, Search, and
Check-in services.

Microservices Evolution – A Case Study

[178]

•	 Business criticality: The business criticality could be either based on
revenue or customer experience. Highly critical modules deliver higher
business value.
Booking is the most revenue-generating service from the business stand
point, whereas Check-in is business critical as it could lead to flight departure
delays, which could lead to revenue loss as well as customer dissatisfaction.

•	 Velocity of changes: Velocity of change indicates the number of change
requests targeting a function in a short time frame. This translates to speed
and agility of delivery. Services with high velocity of change requests are
better candidates for migration as compared to stable modules.
Statistics show that Search, Booking, and Fares go through frequent changes,
whereas Check-in is the most stable function.

•	 Innovation: Services that are part of a disruptive innovative process need
to get priority over back office functions that are based on more established
business processes. Innovations in legacy systems are harder to achieve as
compared to applying innovations in the microservices world.

Most of the innovations are around Search, Booking, Fares, Revenue
Management, and Check-in as compared to back office Accounting.

Based on BrownField's analysis, Search has the highest priority, as it requires
innovation, has high velocity of changes, is less business critical, and gives better
relief for both business and IT. The Search service has minimal dependency with no
requirements to synchronize data back to the legacy system.

Data synchronization during migration
During the transition phase, the legacy system and the new microservices will
run in parallel. Therefore, it is important to keep the data synchronized between
the two systems.

The simplest option is to synchronize the data between the two systems at
the database level by using any data synchronization tool. This approach works
well when both the old and the new systems are built on the same data store
technologies. The complexity will be higher if the data store technologies are
different. The second problem with this approach is that we allow a backdoor entry,
hence exposing the microservices' internal data store outside. This is against the
principle of microservices.

Chapter 4

[179]

Let us take this on a case-by-case basis before we can conclude with a generic
solution. The following diagram shows the data migration and synchronization
aspect once Search is taken out:

Let us assume that we use a NoSQL database for keeping inventory and fares under
the Search service. In this particular case, all we need is the legacy system to supply
data to the new service using asynchronous events. We will have to make some
changes in the existing system to send the fare changes or any inventory changes as
events. The Search service then accepts these events, and stores them locally into the
local NoSQL store.

This is a bit more tedious in the case of the complex Booking service.

Microservices Evolution – A Case Study

[180]

In this case, the new Booking microservice sends the inventory change events to the
Search service. In addition to this, the legacy application also has to send the fare
change events to Search. Booking will then store the new Booking service in its My
SQL data store.

The most complex piece, the Booking service, has to send the booking events
and the inventory events back to the legacy system. This is to ensure that the
functions in the legacy system continue to work as before. The simplest approach
is to write an update component which accepts the events and updates the old
booking records table so that there are no changes required in the other legacy
modules. We will continue this until none of the legacy components are referring
the booking and inventory data. This will help us minimize changes in the legacy
system, and therefore, reduce the risk of failures.

In short, a single approach may not be sufficient. A multi-pronged approach based
on different patterns is required.

Chapter 4

[181]

Managing reference data
One of the biggest challenges in migrating monolithic applications to microservices
is managing reference data. A simple approach is to build the reference data as
another microservice itself as shown in the following diagram:

In this case, whoever needs reference data should access it through the microservice
endpoints. This is a well-structured approach, but could lead to performance issues
as encountered in the original legacy system.

An alternate approach is to have reference data as a microservice service for all the
admin and CRUD functions. A near cache will then be created under each service to
incrementally cache data from the master services. A thin reference data access proxy
library will be embedded in each of these services. The reference data access proxy
abstracts whether the data is coming from cache or from a remote service.

Microservices Evolution – A Case Study

[182]

This is depicted in the next diagram. The master node in the given diagram is the
actual reference data microservice:

The challenge is to synchronize the data between the master and the slave. A
subscription mechanism is required for those data caches that change frequently.

A better approach is to replace the local cache with an in-memory data grid, as
shown in the following diagram:

Chapter 4

[183]

The reference data microservice will write to the data grid, whereas the proxy
libraries embedded in other services will have read-only APIs. This eliminates the
requirement to have subscription of data, and is much more efficient and consistent.

User interfaces and web applications
During the transition phase, we have to keep both the old and new user interfaces
together. There are three general approaches usually taken in this scenario.

The first approach is to have the old and new user interfaces as separate user
applications with no link between them, as depicted in the following diagram:

A user signs in to the new application as well as into the old application, much
like two different applications, with no single sign-on (SSO) between them. This
approach is simple, and there is no overhead. In most of the cases, this may not be
acceptable to the business unless it is targeted at two different user communities.

The second approach is to use the legacy user interface as the primary application,
and then transfer page controls to the new user interfaces when the user requests
pages of the new application:

Microservices Evolution – A Case Study

[184]

In this case, since the old and the new applications are web-based applications
running in a web browser window, users will get a seamless experience. SSO has to
be implemented between the old and the new user interfaces.

The third approach is to integrate the existing legacy user interface directly to the
new microservices backend, as shown in the next diagram:

In this case, the new microservices are built as headless applications with no
presentation layer. This could be challenging, as it may require many changes
in the old user interface such as introducing service calls, data model conversions,
and so on.

Another issue in the last two cases is how to handle the authentication of resources
and services.

Session handling and security
Assume that the new services are written based on Spring Security with a
token-based authorization strategy, whereas the old application uses a
custom-built authentication with its local identity store.

Chapter 4

[185]

The following diagram shows how to integrate between the old and the new
services:

The simplest approach, as shown in the preceding diagram, is to build a new
identity store with an authentication service as a new microservice using Spring
Security. This will be used for all our future resource and service protections,
for all microservices.

The existing user interface application authenticates itself against the new
authentication service, and secures a token. This token will be passed to the new user
interface or new microservice. In both cases, the user interface or microservice will
make a call to the authentication service to validate the given token. If the token is
valid, then the UI or microservice accepts the call.

The catch here is that the legacy identity store has to be synchronized with the
new one.

Microservices Evolution – A Case Study

[186]

Test strategy
One important question to answer from a testing point of view is how can we ensure
that all functions work in the same way as before the migration?

Integration test cases should be written for the services that are getting migrated
before the migration or refactoring. This ensures that once migrated, we get the same
expected result, and the behavior of the system remains the same. An automated
regression test pack has to be in place, and has to be executed every time we make a
change in the new or old system.

In the following diagram, for each service we need one test against the EJB endpoint,
and another one against the microservices endpoint:

Chapter 4

[187]

Building ecosystem capabilities
Before we embark on actual migration, we have to build all of the microservice's
capabilities mentioned under the capability model, as documented in Chapter 3,
Applying Microservices Concepts. These are the prerequisites for developing
microservices-based systems.

In addition to these capabilities, certain application functions are also required
to be built upfront such as reference data, security and SSO, and Customer and
Notification. A data warehouse or a data lake is also required as a prerequisite. An
effective approach is to build these capabilities in an incremental fashion, delaying
development until it is really required.

Migrate modules only if required
In the previous chapters, we have examined approaches and steps for transforming
from a monolithic application to microservices. It is important to understand that it is
not necessary to migrate all modules to the new microservices architecture, unless it
is really required. A major reason is that these migrations incur cost.

We will review a few such scenarios here. BrownField has already taken a decision
to use an external revenue management system in place of the PSS revenue
management function. BrownField is also in the process of centralizing their
accounting functions, and therefore, need not migrate the accounting function from
the legacy system. Migration of CRM does not add much value at this point to the
business. Therefore, it is decided to keep the CRM in the legacy system itself. The
business has plans to move to a SaaS-based CRM solution as part of their cloud
strategy. Also note that stalling the migration halfway through could seriously
impact the complexity of the system.

Microservices Evolution – A Case Study

[188]

Target architecture
The architecture blueprint shown in the following diagram consolidates earlier
discussions into an architectural view. Each block in the diagram represents a
microservice. The shaded boxes are core microservices, and the others are supporting
microservices. The diagram also shows the internal capabilities of each microservice.
User management is moved under security in the target architecture:

Chapter 4

[189]

Each service has its own architecture, typically consisting of a presentation layer,
one or more service endpoints, business logic, business rules, and database. As
we can see, we use different selections of databases that are more suitable for each
microservice. Each one is autonomous with minimal orchestration between the
services. Most of the services interact with each other using the service endpoints.

Internal layering of microservices
In this section, we will further explore the internal structure of microservices. There
is no standard to be followed for the internal architecture of a microservice. The rule
of thumb is to abstract realizations behind simple service endpoints.

A typical structure would look like the one shown in the following diagram:

The UI accesses REST services through a service gateway. The API gateway may be
one per microservice or one for many microservices—it depends on what we want
to do with the API gateway. There could be one or more rest endpoints exposed by
microservices. These endpoints, in turn, connect to one of the business components
within the service. Business components then execute all the business functions with
the help of domain entities. A repository component is used for interacting with the
backend data store.

Microservices Evolution – A Case Study

[190]

Orchestrating microservices
The logic of the booking orchestration and the execution of rules sits within the
Booking service. The brain is still inside the Booking service in the form of one or
more booking business components. Internally, business components orchestrate
private APIs exposed by other business components or even external services:

As shown in the preceding diagram, the booking service internally calls to update
the inventory of its own component other than calling the Fare service.

Is there any orchestration engine required for this activity? It depends on the
requirements. In complex scenarios, we may have to do a number of things in
parallel. For example, creating a booking internally applies a number of booking
rules, it validates the fare, and it validates the inventory before creating a
booking. We may want to execute them in parallel. In such cases, we may use Java
concurrency APIs or reactive Java libraries.

In extremely complex situations, we may opt for an integration framework such as
Spring Integration or Apache Camel in embedded mode.

Chapter 4

[191]

Integration with other systems
In the microservices world, we use an API gateway or a reliable message bus for
integrating with other non-microservices.

Let us assume that there is another system in BrownField that needs booking data.
Unfortunately, the system is not capable of subscribing to the booking events that
the Booking microservice publishes. In such cases, an Enterprise Application
integration (EAI) solution could be employed, which listens to our booking events,
and then uses a native adaptor to update the database.

Managing shared libraries
Certain business logic is used in more than one microservice. Search and
Reservation, in this case, use inventory rules. In such cases, these shared libraries will
be duplicated in both the microservices.

Handling exceptions
Examine the booking scenario to understand the different exception handling
approaches. In the following service sequence diagram, there are three lines marked
with a cross mark. These are the potential areas where exceptions could occur:

Microservices Evolution – A Case Study

[192]

There is a synchronous communication between Booking and Fare. What if the Fare
service is not available? If the Fare service is not available, throwing an error back
to the user may cause revenue loss. An alternate thought is to trust the fare which
comes as part of the incoming request. When we serve search, the search results will
have the fare as well. When the user selects a flight and submits, the request will
have the selected fare. In case the Fare service is not available, we trust the incoming
request, and accept the Booking. We will use a circuit breaker and a fallback service
which simply creates the booking with a special status, and queues the booking for
manual action or a system retry.

What if creating the booking fails? If creating a booking fails unexpectedly, a better
option is to throw a message back to the user. We could try alternative options, but
that could increase the overall complexity of the system. The same is applicable for
inventory updates.

In the case of creating a booking and updating the inventory, we avoid a situation
where a booking is created, and an inventory update somehow fails. As the
inventory is critical, it is better to have both, create booking and update inventory,
to be in a local transaction. This is possible as both components are under the same
subsystem.

If we consider the Check-in scenario, Check-in sends an event to Boarding and
Booking as shown in the next diagram:

Chapter 4

[193]

Consider a scenario where the Check-in services fail immediately after the Check-in
Complete event is sent out. The other consumers processed this event, but the actual
check-in is rolled back. This is because we are not using a two-phase commit. In this
case, we need a mechanism for reverting that event. This could be done by catching
the exception, and sending another Check-in Cancelled event.

In this case, note that to minimize the use of compensating transactions, sending the
Check-in event is moved towards the end of the Check-in transaction. This reduces
the chance of failure after sending out the event.

Microservices Evolution – A Case Study

[194]

On the other hand, what if the check-in is successful, but sending the event failed?
We could think of two approaches. The first approach would be to invoke a fallback
service to store it locally, and then use another sweep-and-scan program to send
the event at a later time. It could even retry multiple times. This could add more
complexity and may not be efficient in all cases. An alternate approach is to throw
the exception back to the user so that the user can retry. However, this might not
always be good from a customer engagement standpoint. On the other hand, the
earlier option is better for the system's health. A trade-off analysis is required to find
out the best solution for the given situation.

Target implementation view
The next diagram represents the implementation view of the BrownField PSS
microservices system:

As shown in the preceding diagram, we are implementing four microservices as an
example: Search, Fare, Booking, and Check-in. In order to test the application, there
is a website application developed using Spring MVC with Thymeleaf templates.
The asynchronous messaging is implemented with the help of RabbitMQ. In this
sample implementation, the default H2 database is used as the in-memory store for
demonstration purposes.

The code in this section demonstrates all the capabilities highlighted in the Reviewing
the microservices capability model section of this chapter.

Chapter 4

[195]

Implementation projects
The basic implementation of the BrownField Airline's PSS microservices system has
five core projects as summarized in the following table. The table also shows the port
range used for these projects to ensure consistency throughout the book:

Microservice Projects Port Range
Book microservice chapter4.book 8060-8069
Check-in microservice chapter4.checkin 8070-8079
Fare microservice chapter4.fares 8080-8089
Search microservice chapter4.search 8090-8099
Website chapter4.website 8001

The website is the UI application for testing the PSS microservices.

All microservice projects in this example follow the same pattern for package
structure as shown in the following screenshot:

Microservices Evolution – A Case Study

[196]

The different packages and their purposes are explained as follows:

•	 The root folder (com.brownfield.pss.book) contains the default Spring
Boot application.

•	 The component package hosts all the service components where the business
logic is implemented.

•	 The controller package hosts the REST endpoints and the messaging
endpoints. Controller classes internally utilize the component classes for
execution.

•	 The entity package contains the JPA entity classes for mapping to the
database tables.

•	 Repository classes are packaged inside the repository package, and are
based on Spring Data JPA.

Running and testing the project
Follow the steps listed next to build and test the microservices developed in this
chapter:

1.	 Build each of the projects using Maven. Ensure that the test flag is switched
off. The test programs assume other dependent services are up and running.
It fails if the dependent services are not available. In our example, Booking
and Fare have direct dependencies. We will learn how to circumvent this
dependency in Chapter 7, Logging and Monitoring Microservices:
mvn -Dmaven.test.skip=true install

2.	 Run the RabbitMQ server:
rabbitmq_server-3.5.6/sbin$./rabbitmq-server

3.	 Run the following commands in separate terminal windows:
java -jar target/fares-1.0.jar

java -jar target/search-1.0.jar

java -jar target/checkin-1.0.jar

java -jar target/book-1.0.jar

java -jar target/website-1.0.jar

Chapter 4

[197]

4.	 The website project has a CommandLineRunner, which executes all the test
cases at startup. Once all the services are successfully started, open http://
localhost:8001 in a browser.

5.	 The browser asks for basic security credentials. Use guest or guest123 as
the credentials. This example only shows the website security with a basic
authentication mechanism. As explained in Chapter 2, Building Microservices
with Spring Boot, service-level security can be achieved using OAuth2.

6.	 Entering the correct security credentials displays the following screen. This is
the home screen of our BrownField PSS application:

7.	 The SUBMIT button invokes the Search microservice to fetch the available
flights that meet the conditions mentioned on the screen. A few flights are
pre-populated at the startup of the Search microservice. Edit the Search
microservice code to feed in additional flights, if required.

Microservices Evolution – A Case Study

[198]

8.	 The output screen with a list of flights is shown in the next screenshot.
The Book link will take us to the booking screen for the selected flight:

9.	 The following screenshot shows the booking screen. The user can enter the
passenger details, and create a booking by clicking on the CONFIRM button.
This invokes the Booking microservice, and internally, the Fare service as
well. It also sends a message back to the Search microservice:

Chapter 4

[199]

10.	 If booking is successful, the next confirmation screen is displayed with a
booking reference number:

11.	 Let us test the Check-in microservice. This can be done by clicking on
CheckIn in the menu at the top of the screen. Use the booking reference
number obtained in the previous step to test Check-in. This is shown in the
following screenshot:

Microservices Evolution – A Case Study

[200]

12.	 Clicking on the SEARCH button in the previous screen invokes the Booking
microservice, and retrieves the booking information. Click on the CheckIn
link to perform the check-in. This invokes the Check-in microservice:

13.	 If check-in is successful, it displays the confirmation message, as shown in
the next screenshot, with a confirmation number. This is done by calling the
Check-in service internally. The Check-in service sends a message to Booking
to update the check-in status:

Chapter 4

[201]

Summary
In this chapter, we implemented and tested the BrownField PSS microservice with
basic Spring Boot capabilities. We learned how to approach a real use case with a
microservices architecture.

We examined the various stages of a real-world evolution towards microservices
from a monolithic application. We also evaluated the pros and cons of multiple
approaches, and the obstacles encountered when migrating a monolithic application.
Finally, we explained the end-to-end microservices design for the use case
that we examined. Design and implementation of a fully-fledged microservice
implementation was also validated.

In the next chapter, we will see how the Spring Cloud project helps us to transform
the developed BrownField PSS microservices to an Internet-scale deployment.

[203]

Scaling Microservices with
Spring Cloud

In order to manage Internet-scale microservices, one requires more capabilities than
what are offered by the Spring Boot framework. The Spring Cloud project has a suite
of purpose-built components to achieve these additional capabilities effortlessly.

This chapter will provide a deep insight into the various components of the Spring
Cloud project such as Eureka, Zuul, Ribbon, and Spring Config by positioning
them against the microservices capability model discussed in Chapter 3, Applying
Microservices Concepts. It will demonstrate how the Spring Cloud components help
to scale the BrownField Airline's PSS microservices system, developed in the
previous chapter.

By the end of this chapter, you will learn about the following:

•	 The Spring Config server for externalizing configuration
•	 The Eureka server for service registration and discovery
•	 The relevance of Zuul as a service proxy and gateway
•	 The implementation of automatic microservice registration and

service discovery
•	 Spring Cloud messaging for asynchronous microservice composition

Scaling Microservices with Spring Cloud

[204]

Reviewing microservices capabilities
The examples in this chapter explore the following microservices capabilities from
the microservices capability model discussed in Chapter 3, Applying Microservices
Concepts:

•	 Software Defined Load Balancer
•	 Service Registry
•	 Configuration Service
•	 Reliable Cloud Messaging
•	 API Gateways

Reviewing BrownField's PSS
implementation
In Chapter 4, Microservices Evolution – A Case Study, we designed and developed a
microservice-based PSS system for BrownField Airlines using the Spring framework
and Spring Boot. The implementation is satisfactory from the development point of
view, and it serves the purpose for low volume transactions. However, this is not
good enough for deploying large, enterprise-scale deployments with hundreds or
even thousands of microservices.

Chapter 5

[205]

In Chapter 4, Microservices Evolution – A Case Study, we developed four microservices:
Search, Booking, Fares, and Check-in. We also developed a website to test the
microservices.

We have accomplished the following items in our microservice implementation
so far:

•	 Each microservice exposes a set of REST/JSON endpoints for accessing
business capabilities

•	 Each microservice implements certain business functions using the
Spring framework.

•	 Each microservice stores its own persistent data using H2, an in-memory
database

•	 Microservices are built with Spring Boot, which has an embedded Tomcat
server as the HTTP listener

•	 RabbitMQ is used as an external messaging service. Search, Booking, and
Check-in interact with each other through asynchronous messaging

•	 Swagger is integrated with all microservices for documenting the REST APIs.
•	 An OAuth2-based security mechanism is developed to protect the

microservices

What is Spring Cloud?
The Spring Cloud project is an umbrella project from the Spring team that implements
a set of common patterns required by distributed systems, as a set of easy-to-use Java
Spring libraries. Despite its name, Spring Cloud by itself is not a cloud solution. Rather,
it provides a number of capabilities that are essential when developing applications
targeting cloud deployments that adhere to the Twelve-Factor application principles.
By using Spring Cloud, developers just need to focus on building business capabilities
using Spring Boot, and leverage the distributed, fault-tolerant, and
self-healing capabilities available out of the box from Spring Cloud.

The Spring Cloud solutions are agnostic to the deployment environment, and can
be developed and deployed in a desktop PC or in an elastic cloud. The cloud-ready
solutions that are developed using Spring Cloud are also agnostic and portable across
many cloud providers such as Cloud Foundry, AWS, Heroku, and so on. When not
using Spring Cloud, developers will end up using services natively provided by the
cloud vendors, resulting in deep coupling with the PaaS providers. An alternate option
for developers is to write quite a lot of boilerplate code to build these services. Spring
Cloud also provides simple, easy-to-use Spring-friendly APIs, which abstract the cloud
provider's service APIs such as those APIs coming with AWS Notification Service.

Scaling Microservices with Spring Cloud

[206]

Built on Spring's "convention over configuration" approach, Spring Cloud defaults
all configurations, and helps the developers get off to a quick start. Spring Cloud
also hides the complexities, and provides simple declarative configurations to build
systems. The smaller footprints of the Spring Cloud components make it developer
friendly, and also make it easy to develop cloud-native applications.

Spring Cloud offers many choices of solutions for developers based on their
requirements. For example, the service registry can be implemented using popular
options such as Eureka, ZooKeeper, or Consul. The components of Spring Cloud
are fairly decoupled, hence, developers get the flexibility to pick and choose what
is required.

What is the difference between Spring Cloud and Cloud Foundry?
Spring Cloud is a developer kit for developing Internet-scale Spring Boot
applications, whereas Cloud Foundry is an open-source Platform as a
Service for building, deploying, and scaling applications.

Spring Cloud releases
The Spring Cloud project is an overarching Spring project that includes
a combination of different components. The versions of these components
are defined in the spring-cloud-starter-parent BOM.

In this book, we are relying on the Brixton.RELEASE version of the Spring Cloud:
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>Brixton.RELEASE</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>

The spring-cloud-starter-parent defines different versions of its subcomponents
as follows:

<spring-cloud-aws.version>1.1.0.RELEASE</spring-cloud-aws.version>
<spring-cloud-bus.version>1.1.0.RELEASE</spring-cloud-bus.version>
<spring-cloud-cloudfoundry.version>1.0.0.RELEASE</spring-cloud-
cloudfoundry.version>
<spring-cloud-commons.version>1.1.0.RELEASE</spring-cloud-commons.
version>
<spring-cloud-config.version>1.1.0.RELEASE</spring-cloud-config.
version>
<spring-cloud-netflix.version>1.1.0.RELEASE</spring-cloud-netflix.
version>

Chapter 5

[207]

<spring-cloud-security.version>1.1.0.RELEASE</spring-cloud-security.
version>
<spring-cloud-cluster.version>1.0.0.RELEASE</spring-cloud-cluster.
version>
<spring-cloud-consul.version>1.0.0.RELEASE</spring-cloud-consul.
version>
<spring-cloud-sleuth.version>1.0.0.RELEASE</spring-cloud-sleuth.
version>
<spring-cloud-stream.version>1.0.0.RELEASE</spring-cloud-stream.
version>
<spring-cloud-zookeeper.version>1.0.0.RELEASE </spring-cloud-
zookeeper.version>

The names of the Spring Cloud releases are in an alphabetic sequence,
starting with A, following the names of the London Tube stations. Angel
was the first release, and Brixton is the second release.

Components of Spring Cloud
Each Spring Cloud component specifically addresses certain distributed system
capabilities. The grayed-out boxes at the bottom of the following diagram show the
capabilities, and the boxes placed on top of these capabilities showcase the Spring
Cloud subprojects addressing these capabilities:

Scaling Microservices with Spring Cloud

[208]

The Spring Cloud capabilities are explained as follows:

•	 Distributed configuration: Configuration properties are hard to manage when
there are many microservice instances running under different profiles such as
development, test, production, and so on. It is, therefore, important to manage
them centrally, in a controlled way. The distributed configuration management
module is to externalize and centralize microservice configuration parameters.
Spring Cloud Config is an externalized configuration server with Git or SVN
as the backing repository. Spring Cloud Bus provides support for propagating
configuration changes to multiple subscribers, generally a microservice
instance. Alternately, ZooKeeper or HashiCorp's Consul can also be used
for distributed configuration management.

•	 Routing: Routing is an API gateway component, primarily used similar
to a reverse proxy that forwards requests from consumers to service
providers. The gateway component can also perform software-based
routing and filtering. Zuul is a lightweight API gateway solution that
offers fine-grained controls to developers for traffic shaping and request/
response transformations.

•	 Load balancing: The load balancer capability requires a software-defined
load balancer module which can route requests to available servers using a
variety of load balancing algorithms. Ribbon is a Spring Cloud subproject
which supports this capability. Ribbon can work as a standalone component,
or integrate and work seamlessly with Zuul for traffic routing.

•	 Service registration and discovery: The service registration and discovery
module enables services to programmatically register with a repository when
a service is available and ready to accept traffic. The microservices advertise
their existence, and make them discoverable. The consumers can then look
up the registry to get a view of the service availability and the endpoint
locations. The registry, in many cases, is more or less a dump. But the
components around the registry make the ecosystem intelligent. There are
many subprojects existing under Spring Cloud which support registry and
discovery capability. Eureka, ZooKeeper, and Consul are three subprojects
implementing the registry capability.

•	 Service-to-service calls: The Spring Cloud Feign subproject under Spring
Cloud offers a declarative approach for making RESTful service-to-service
calls in a synchronous way. The declarative approach allows applications
to work with POJO (Plain Old Java Object) interfaces instead of low-level
HTTP client APIs. Feign internally uses reactive libraries for communication.

Chapter 5

[209]

•	 Circuit breaker: The circuit breaker subproject implements the circuit
breaker pattern. The circuit breaker breaks the circuit when it encounters
failures in the primary service by diverting traffic to another temporary
fallback service. It also automatically reconnects back to the primary
service when the service is back to normal. It finally provides a monitoring
dashboard for monitoring the service state changes. The Spring Cloud
Hystrix project and Hystrix Dashboard implement the circuit breaker
and the dashboard respectively.

•	 Global locks, leadership election and cluster state: This capability is
required for cluster management and coordination when dealing with
large deployments. It also offers global locks for various purposes such as
sequence generation. The Spring Cloud Cluster project implements these
capabilities using Redis, ZooKeeper, and Consul.

•	 Security: Security capability is required for building security for cloud-
native distributed systems using externalized authorization providers such
as OAuth2. The Spring Cloud Security project implements this capability
using customizable authorization and resource servers. It also offers SSO
capabilities, which are essential when dealing with many microservices.

•	 Big data support: The big data support capability is a capability that is
required for data services and data flows in connection with big data
solutions. The Spring Cloud Streams and the Spring Cloud Data Flow
projects implement these capabilities. The Spring Cloud Data Flow is
the re-engineered version of Spring XD.

•	 Distributed tracing: The distributed tracing capability helps to thread and
correlate transitions that are spanned across multiple microservice instances.
Spring Cloud Sleuth implements this by providing an abstraction on top of
various distributed tracing mechanisms such as Zipkin and HTrace with the
support of a 64-bit ID.

•	 Distributed messaging: Spring Cloud Stream provides declarative
messaging integration on top of reliable messaging solutions such as Kafka,
Redis, and RabbitMQ.

•	 Cloud support: Spring Cloud also provides a set of capabilities that offers
various connectors, integration mechanisms, and abstraction on top of
different cloud providers such as the Cloud Foundry and AWS.

Scaling Microservices with Spring Cloud

[210]

Spring Cloud and Netflix OSS
Many of the Spring Cloud components which are critical for microservices'
deployment came from the Netflix Open Source Software (Netflix OSS) center.
Netflix is one of the pioneers and early adaptors in the microservices space. In
order to manage large scale microservices, engineers at Netflix came up with a
number of homegrown tools and techniques for managing their microservices.
These are fundamentally crafted to fill some of the software gaps recognized in
the AWS platform for managing Netflix services. Later, Netflix open-sourced these
components, and made them available under the Netflix OSS platform for public use.
These components are extensively used in production systems, and are battle-tested
with large scale microservice deployments at Netflix.

Spring Cloud offers higher levels of abstraction for these Netflix OSS components,
making it more Spring developer friendly. It also provides a declarative mechanism,
well-integrated and aligned with Spring Boot and the Spring framework.

Setting up the environment for
BrownField PSS
In this chapter, we will amend the BrownField PSS microservices developed in
Chapter 4, Microservices Evolution – A Case Study, using Spring Cloud capabilities.
We will also examine how to make these services enterprise grade using Spring
Cloud components.

Subsequent sections of this chapter will explore how to scale the microservices
developed in the previous chapter for cloud scale deployments, using some out-of-
the-box capabilities provided by the Spring Cloud project. The rest of this chapter
will explore Spring Cloud capabilities such as configuration using the Spring Config
server, Ribbon-based service load balancing, service discovery using Eureka, Zuul
for API gateway, and finally, Spring Cloud messaging for message-based service
interactions. We will demonstrate the capabilities by modifying the BrownField PSS
microservices developed in Chapter 4, Microservices Evolution – A Case Study.

In order to prepare the environment for this chapter, import and rename
(chapter4.* to chapter5.*) projects into a new STS workspace.

The full source code of this chapter is available under the Chapter 5
projects in the code files.

Chapter 5

[211]

Spring Cloud Config
The Spring Cloud Config server is an externalized configuration server in which
applications and services can deposit, access, and manage all runtime configuration
properties. The Spring Config server also supports version control of the
configuration properties.

In the earlier examples with Spring Boot, all configuration parameters were read
from a property file packaged inside the project, either application.properties or
application.yaml. This approach is good, since all properties are moved out of code
to a property file. However, when microservices are moved from one environment
to another, these properties need to undergo changes, which require an application
re-build. This is violation of one of the Twelve-Factor application principles, which
advocate one-time build and moving of the binaries across environments.

A better approach is to use the concept of profiles. Profiles, as discussed in Chapter
2, Building Microservices with Spring Boot, is used for partitioning different properties
for different environments. The profile-specific configuration will be named
application-{profile}.properties. For example, application-development.
properties represents a property file targeted for the development environment.

However, the disadvantage of this approach is that the configurations are statically
packaged along with the application. Any changes in the configuration properties
require the application to be rebuilt.

There are alternate ways to externalize the configuration properties from the
application deployment package. Configurable properties can also be read
from an external source in a number of ways:

•	 From an external JNDI server using JNDI namespace (java:comp/env)
•	 Using the Java system properties (System.getProperties()) or using

the –D command line option
•	 Using the PropertySource configuration:

@PropertySource("file:${CONF_DIR}/application.properties")
 public class ApplicationConfig {
}

•	 Using a command-line parameter pointing a file to an external location:
java -jar myproject.jar --spring.config.location=

Scaling Microservices with Spring Cloud

[212]

JNDI operations are expensive, lack flexibility, have difficulties in replication, and
are not version controlled. System.properties is not flexible enough for large-scale
deployments. The last two options rely on a local or a shared filesystem mounted
on the server.

For large scale deployments, a simple yet powerful centralized configuration
management solution is required:

As shown in the preceding diagram, all microservices point to a central server to get
the required configuration parameters. The microservices then locally cache these
parameters to improve performance. The Config server propagates the configuration
state changes to all subscribed microservices so that the local cache's state can be
updated with the latest changes. The Config server also uses profiles to resolve
values specific to an environment.

As shown in the following screenshot, there are multiple options available under
the Spring Cloud project for building the configuration server. Config Server,
Zookeeper Configuration, and Consul Configuration are available as options.
However, this chapter will only focus on the Spring Config server implementation:

Chapter 5

[213]

The Spring Config server stores properties in a version-controlled repository such as
Git or SVN. The Git repository can be local or remote. A highly available remote Git
server is preferred for large scale distributed microservice deployments.

The Spring Cloud Config server architecture is shown in the following diagram:

As shown in the preceding diagram, the Config client embedded in the Spring Boot
microservices does a configuration lookup from a central configuration server using
a simple declarative mechanism, and stores properties into the Spring environment.
The configuration properties can be application-level configurations such as
trade limit per day, or infrastructure-related configurations such as server URLs,
credentials, and so on.

Unlike Spring Boot, Spring Cloud uses a bootstrap context, which is a parent context
of the main application. Bootstrap context is responsible for loading configuration
properties from the Config server. The bootstrap context looks for bootstrap.yaml
or bootstrap.properties for loading initial configuration properties. To make this
work in a Spring Boot application, rename the application.* file to bootstrap.*.

Scaling Microservices with Spring Cloud

[214]

What's next?
The next few sections demonstrate how to use the Config server in a real-world
scenario. In order to do this, we will modify our search microservice (chapter5.
search) to use the Config server. The following diagram depicts the scenario:

In this example, the Search service will read the Config server at startup by passing
the service name. In this case, the service name of the search service will be search-
service. The properties configured for the search-service include the RabbitMQ
properties as well as a custom property.

The full source code of this section is available under the
chapter5.configserver project in the code files.

Setting up the Config server
The following steps need to be followed to create a new Config server using STS:

1.	 Create a new Spring Starter Project, and select Config Server and Actuator
as shown in the following diagram:

Chapter 5

[215]

2.	 Set up a Git repository. This can be done by pointing to a remote Git
configuration repository like the one at https://github.com/spring-cloud-
samples/config-repo. This URL is an indicative one, a Git repository used
by the Spring Cloud examples. We will have to use our own Git repository
instead.

3.	 Alternately, a local filesystem-based Git repository can be used. In a real
production scenario, an external Git is recommended. The Config server in
this chapter will use a local filesystem-based Git repository for demonstration
purposes.

4.	 Enter the commands listed next to set up a local Git repository:
$ cd $HOME

$ mkdir config-repo

$ cd config-repo

$ git init .

$ echo message : helloworld > application.properties

$ git add -A .

$ git commit -m "Added sample application.properties"

This code snippet creates a new Git repository on the local filesystem. A
property file named application.properties with a message property
and value helloworld is also created.

https://github.com/spring-cloud-samples/config-repo
https://github.com/spring-cloud-samples/config-repo

Scaling Microservices with Spring Cloud

[216]

The file application.properties is created for demonstration purposes.
We will change this in the subsequent sections.

5.	 The next step is to change the configuration in the Config server to use the
Git repository created in the previous step. In order to do this, rename the
file application.properties to bootstrap.properties:

6.	 Edit the contents of the new bootstrap.properties file to match
the following:
server.port=8888
spring.cloud.config.server.git.uri: file://${user.home}/config-
repo

Port 8888 is the default port for the Config server. Even without configuring
server.port, the Config server should bind to 8888. In the Windows
environment, an extra / is required in the file URL.

7.	 Optionally, rename the default package of the auto-generated Application.
java from com.example to com.brownfield.configserver. Add
@EnableConfigServer in Application.java:
@EnableConfigServer
@SpringBootApplication
public class ConfigserverApplication {

8.	 Run the Config server by right-clicking on the project, and running it as a
Spring Boot app.

9.	 Visit http://localhost:8888/env to see whether the server is running.
If everything is fine, this will list all environment configurations. Note that
/env is an actuator endpoint.

Chapter 5

[217]

10.	 Check http://localhost:8888/application/default/master to see
the properties specific to application.properties, which were added
in the earlier step. The browser will display the properties configured in
application.properties. The browser should display contents similar to
the following:
{"name":"application","profiles":["default"],"label":"master","ver
sion":"6046fd2ff4fa09d3843767660d963866ffcc7d28","propertySources"
:[{"name":"file:///Users/rvlabs /config-repo /application.properti
es","source":{"message":"helloworld"}}]}

Understanding the Config server URL
In the previous section, we used http://localhost:8888/application/default/
master to explore the properties. How do we interpret this URL?

The first element in the URL is the application name. In the given example, the
application name should be application. The application name is a logical
name given to the application, using the spring.application.name property in
bootstrap.properties of the Spring Boot application. Each application must
have a unique name. The Config server will use the name to resolve and pick up
appropriate properties from the Config server repository. The application name is
also sometimes referred to as service ID. If there is an application with the name
myapp, then there should be a myapp.properties in the configuration repository
to store all the properties related to that application.

The second part of the URL represents the profile. There can be more than one
profile configured within the repository for an application. The profiles can be
used in various scenarios. The two common scenarios are segregating different
environments such as Dev, Test, Stage, Prod, and the like, or segregating server
configurations such as Primary, Secondary, and so on. The first one represents
different environments of an application, whereas the second one represents
different servers where an application is deployed.

The profile names are logical names that will be used for matching the file name in
the repository. The default profile is named default. To configure properties for
different environments, we have to configure different files as given in the following
example. In this example, the first file is for the development environment whereas
the second is for the production environment:

application-development.properties
application-production.properties

Scaling Microservices with Spring Cloud

[218]

These are accessible using the following URLs respectively:

•	 http://localhost:8888/application/development

•	 http://localhost:8888/application/production

The last part of the URL is the label, and is named master by default. The label is an
optional Git label that can be used, if required.

In short, the URL is based on the following pattern: http://localhost:8888/
{name}/{profile}/{label}.

The configuration can also be accessed by ignoring the profile. In the preceding
example, all the following three URLs point to the same configuration:

•	 http://localhost:8888/application/default

•	 http://localhost:8888/application/master

•	 http://localhost:8888/application/default/master

There is an option to have different Git repositories for different profiles. This
makes sense for production systems, since the access to different repositories
could be different.

Accessing the Config Server from clients
In the previous section, a Config server is set up and accessed using a web browser.
In this section, the Search microservice will be modified to use the Config server.
The Search microservice will act as a Config client.

Follow these steps to use the Config server instead of reading properties from the
application.properties file:

1.	 Add the Spring Cloud Config dependency and the actuator (if the actuator
is not already in place) to the pom.xml file. The actuator is mandatory for
refreshing the configuration properties:
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-config</artifactId>
 </dependency>

2.	 Since we are modifying the Spring Boot Search microservice from the earlier
chapter, we will have to add the following to include the Spring Cloud
dependencies. This is not required if the project is created from scratch:
 <dependencyManagement>
 <dependencies>
 <dependency>

http://localhost:8888/application/development
http://localhost:8888/application/production
http://localhost:8888/application/default
http://localhost:8888/application/master
http://localhost:8888/application/default/master

Chapter 5

[219]

 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>Brixton.RELEASE</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>

3.	 The next screenshot shows the Cloud starter library selection screen. If the
application is built from the ground up, select the libraries as shown in the
following screenshot:

4.	 Rename application.properties to bootstrap.properties, and add an
application name and a configuration server URL. The configuration server
URL is not mandatory if the Config server is running on the default port
(8888) on the local host:
The new bootstrap.properties file will look as follows:
spring.application.name=search-service
spring.cloud.config.uri=http://localhost:8888

server.port=8090

Scaling Microservices with Spring Cloud

[220]

spring.rabbitmq.host=localhost
spring.rabbitmq.port=5672
spring.rabbitmq.username=guest
spring.rabbitmq.password=guest

search-service is a logical name given to the Search microservice. This will
be treated as service ID. The Config server will look for search-service.
properties in the repository to resolve the properties.

5.	 Create a new configuration file for search-service. Create a new
search-service.properties under the config-repo folder where the Git
repository is created. Note that search-service is the service ID given to the
Search microservice in the bootstrap.properties file. Move service-specific
properties from bootstrap.properties to the new search-service.
properties file. The following properties will be removed from bootstrap.
properties, and added to search-service.properties:
spring.rabbitmq.host=localhost
spring.rabbitmq.port=5672
spring.rabbitmq.username=guest
spring.rabbitmq.password=guest

6.	 In order to demonstrate the centralized configuration of properties and
propagation of changes, add a new application-specific property to the
property file. We will add originairports.shutdown to temporarily take
out an airport from the search. Users will not get any flights when searching
for an airport mentioned in the shutdown list:
originairports.shutdown=SEA

In this example, we will not return any flights when searching with SEA
as origin.

7.	 Commit this new file into the Git repository by executing the following
commands:
git add –A .

git commit –m "adding new configuration"

8.	 The final search-service.properties file should look as follows:
spring.rabbitmq.host=localhost
spring.rabbitmq.port=5672
spring.rabbitmq.username=guest
spring.rabbitmq.password=guest
originairports.shutdown:SEA

Chapter 5

[221]

9.	 The chapter5.search project's bootstrap.properties should look like
the following:
spring.application.name=search-service
server.port=8090
spring.cloud.config.uri=http://localhost:8888

10.	 Modify the Search microservice code to use the configured parameter,
originairports.shutdown. A RefreshScope annotation has to be added at
the class level to allow properties to be refreshed when there is a change. In
this case, we are adding a refresh scope to the SearchRestController class:
@RefreshScope

11.	 Add the following instance variable as a place holder for the new property
that is just added in the Config server. The property names in the search-
service.properties file must match:
 @Value("${originairports.shutdown}")
 private String originAirportShutdownList;

12.	 Change the application code to use this property. This is done by modifying
the search method as follows:
 @RequestMapping(value="/get", method =
 RequestMethod.POST)
 List<Flight> search(@RequestBody SearchQuery query){
 logger.info("Input : "+ query);
 if(Arrays.asList(originAirportShutdownList.split(","))
 .contains(query.getOrigin())){
 logger.info("The origin airport is in shutdown state");
 return new ArrayList<Flight>();
 }
 return searchComponent.search(query);
 }

The search method is modified to read the parameter
originAirportShutdownList and see whether the requested origin is in the
shutdown list. If there is a match, then instead of proceeding with the actual
search, the search method will return an empty flight list.

13.	 Start the Config server. Then start the Search microservice. Make sure that
the RabbitMQ server is running.

14.	 Modify the chapter5.website project to match the bootstrap.properties
content as follows to utilize the Config server:
spring.application.name=test-client
server.port=8001
spring.cloud.config.uri=http://localhost:8888

Scaling Microservices with Spring Cloud

[222]

15.	 Change the run method of CommandLineRunner in Application.java to
query SEA as the origin airport:
SearchQuery = new SearchQuery("SEA","SFO","22-JAN-16");

16.	 Run the chapter5.website project. The CommandLineRunner will now
return an empty flight list. The following message will be printed in
the server:
The origin airport is in shutdown state

Handling configuration changes
This section will demonstrate how to propagate configuration properties when there
is a change:

1.	 Change the property in the search-service.properties file to the following:
originairports.shutdown:NYC

Commit the change in the Git repository. Refresh the Config server URL
(http://localhost:8888/search-service/default) for this service and
see whether the property change is reflected. If everything is fine, we will see
the property change. The preceding request will force the Config server to
read the property file again from the repository.

2.	 Rerun the website project again, and observe the CommandLineRunner
execution. Note that in this case, we are not restarting the Search
microservice nor the Config server. The service returns an empty
flight list as earlier, and still complains as follows:
The origin airport is in shutdown state

This means the change is not reflected in the Search service, and the service is
still working with an old copy of the configuration properties.

3.	 In order to force reloading of the configuration properties, call the /refresh
endpoint of the Search microservice. This is actually the actuator's refresh
endpoint. The following command will send an empty POST to the /refresh
endpoint:
curl –d {} localhost:8090/refresh

4.	 Rerun the website project, and observe the CommandLineRunner execution.
This should return the list of flights that we have requested from SEA. Note
that the website project may fail if the Booking service is not up and running.
The /refresh endpoint will refresh the locally cached configuration
properties, and reload fresh values from the Config server.

Chapter 5

[223]

Spring Cloud Bus for propagating
configuration changes
With the preceding approach, configuration parameters can be changed without
restarting the microservices. This is good when there are only one or two instances
of the services running. What happens if there are many instances? For example, if
there are five instances, then we have to hit /refresh against each service instance.
This is definitely a cumbersome activity:

The Spring Cloud Bus provides a mechanism to refresh configurations across
multiple instances without knowing how many instances there are, or their locations.
This is particularly handy when there are many service instances of a microservice
running or when there are many microservices of different types running. This is
done by connecting all service instances through a single message broker. Each
instance subscribes for change events, and refreshes its local configuration when
required. This refresh is triggered by making a call to any one instance by hitting the
/bus/refresh endpoint, which then propagates the changes through the cloud bus
and the common message broker.

In this example, RabbitMQ is used as the AMQP message broker. Implement this by
following the steps documented as follows:

1.	 Add a new dependency in the chapter5.search project's pom.xml file to
introduce the Cloud Bus dependency:
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-bus-amqp</artifactId>
</dependency>

Scaling Microservices with Spring Cloud

[224]

2.	 The Search microservice also needs connectivity to the RabbitMQ, but this is
already provided in search-service.properties.

3.	 Rebuild and restart the Search microservice. In this case, we will run two
instances of the Search microservice from a command line, as follows:
java -jar -Dserver.port=8090 search-1.0.jar

java -jar -Dserver.port=8091 search-1.0.jar

The two instances of the Search service will be now running, one on port
8090 and another one on 8091.

4.	 Rerun the website project. This is just to make sure that everything is
working. The Search service should return one flight at this point.

5.	 Now, update search-service.properties with the following value,
and commit to Git:
originairports.shutdown:SEA

6.	 Run the following command to /bus/refresh. Note that we are running
a new bus endpoint against one of the instances, 8090 in this case:
curl –d {} localhost:8090/bus/refresh

7.	 Immediately, we will see the following message for both instances:
Received remote refresh request. Keys refreshed [originairports.
shutdown]

The bus endpoint sends a message to the message broker internally, which is
eventually consumed by all instances, reloading their property files. Changes
can also be applied to a specific application by specifying the application
name like so:

/bus/refresh?destination=search-service:**

We can also refresh specific properties by setting the property name as a parameter.

Setting up high availability for the Config
server
The previous sections explored how to set up the Config server, allowing real-time
refresh of configuration properties. However, the Config server is a single point of
failure in this architecture.

There are three single points of failure in the default architecture that was established
in the previous section. One of them is the availability of the Config server itself, the
second one is the Git repository, and the third one is the RabbitMQ server.

Chapter 5

[225]

The following diagram shows a high availability architecture for the Config server:

The architecture mechanisms and rationale are explained as follows:

The Config server requires high availability, since the services won't be able to
bootstrap if the Config server is not available. Hence, redundant Config servers
are required for high availability. However, the applications can continue to run
if the Config server is unavailable after the services are bootstrapped. In this case,
services will run with the last known configuration state. Hence, the Config server
availability is not at the same critical level as the microservices availability.

In order to make the Config server highly available, we need multiple instances
of the Config servers. Since the Config server is a stateless HTTP service, multiple
instances of configuration servers can be run in parallel. Based on the load on the
configuration server, a number of instances have to be adjusted. The bootstrap.
properties file is not capable of handling more than one server address. Hence,
multiple configuration servers should be configured to run behind a load balancer or
behind a local DNS with failover and fallback capabilities. The load balancer or DNS
server URL will be configured in the microservices' bootstrap.properties file.
This is with the assumption that the DNS or the load balancer is highly available
and capable of handling failovers.

In a production scenario, it is not recommended to use a local file-based Git
repository. The configuration server should be typically backed with a highly
available Git service. This is possible by either using an external highly available Git
service or a highly available internal Git service. SVN can also be considered.

Scaling Microservices with Spring Cloud

[226]

Having said that, an already bootstrapped Config server is always capable of
working with a local copy of the configuration. Hence, we need a highly available Git
only when the Config server needs to be scaled. Therefore, this too is not as critical
as the microservices availability or the Config server availability.

The GitLab example for setting up high availability is available at
https://about.gitlab.com/high-availability/.

RabbitMQ also has to be configured for high availability. The high availability for
RabbitMQ is needed only to push configuration changes dynamically to all instances.
Since this is more of an offline controlled activity, it does not really require the same
high availability as required by the components.

RabbitMQ high availability can be achieved by either using a cloud service or a
locally configured highly available RabbitMQ service.

Setting up high availability for Rabbit MQ is documented at
https://www.rabbitmq.com/ha.html.

Monitoring the Config server health
The Config server is nothing but a Spring Boot application, and is, by default,
configured with an actuator. Hence, all actuator endpoints are applicable for
the Config server. The health of the server can be monitored using the following
actuator URL: http://localhost:8888/health.

Config server for configuration files
We may run into scenarios where we need a complete configuration file such
as logback.xml to be externalized. The Config server provides a mechanism to
configure and store such files. This is achievable by using the URL format as follows:
/{name}/{profile}/{label}/{path}.

The name, profile, and label have the same meanings as explained earlier. The path
indicates the file name such as logback.xml.

https://about.gitlab.com/high-availability/
https://www.rabbitmq.com/ha.html

Chapter 5

[227]

Completing changes to use the Config server
In order to build this capability to complete BrownField Airline's PSS, we have
to make use of the configuration server for all services. All microservices in the
examples given in chapter5.* need to make similar changes to look to the Config
server for getting the configuration parameters.

The following are a few key change considerations:

•	 The Fare service URL in the booking component will also be externalized:
private static final String FareURL = "/fares";

@Value("${fares-service.url}")
private String fareServiceUrl;

Fare = restTemplate.getForObject(fareServiceUrl+FareURL +"/
get?flightNumber="+record.getFlightNumber()+"&flightDate="+record.
getFlightDate(),Fare.class);

As shown in the preceding code snippet, the Fare service URL is fetched
through a new property: fares-service.url.

•	 We are not externalizing the queue names used in the Search, Booking, and
Check-in services at the moment. Later in this chapter, these will be changed
to use Spring Cloud Streams.

Feign as a declarative REST client
In the Booking microservice, there is a synchronous call to Fare. RestTemplate
is used for making the synchronous call. When using RestTemplate, the URL
parameter is constructed programmatically, and data is sent across to the other
service. In more complex scenarios, we will have to get to the details of the HTTP
APIs provided by RestTemplate or even to APIs at a much lower level.

Feign is a Spring Cloud Netflix library for providing a higher level of abstraction
over REST-based service calls. Spring Cloud Feign works on a declarative principle.
When using Feign, we write declarative REST service interfaces at the client, and
use those interfaces to program the client. The developer need not worry about the
implementation of this interface. This will be dynamically provisioned by Spring at
runtime. With this declarative approach, developers need not get into the details of
the HTTP level APIs provided by RestTemplate.

Scaling Microservices with Spring Cloud

[228]

The following code snippet is the existing code in the Booking microservice for
calling the Fare service:

Fare fare = restTemplate.getForObject(FareURL +"/
get?flightNumber="+record.getFlightNumber()+"&flightDate="+record.
getFlightDate(),Fare.class);

In order to use Feign, first we need to change the pom.xml file to include the Feign
dependency as follows:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-feign</artifactId>
</dependency>

For a new Spring Starter project, Feign can be selected from the starter library
selection screen, or from http://start.spring.io/. This is available under
Cloud Routing as shown in the following screenshot:

The next step is to create a new FareServiceProxy interface. This will act as a proxy
interface of the actual Fare service:

@FeignClient(name="fares-proxy", url="localhost:8080/fares")
public interface FareServiceProxy {
 @RequestMapping(value = "/get", method=RequestMethod.GET)
 Fare getFare(@RequestParam(value="flightNumber") String
 flightNumber, @RequestParam(value="flightDate") String
 flightDate);
}

http://start.spring.io/

Chapter 5

[229]

The FareServiceProxy interface has a @FeignClient annotation. This annotation
tells Spring to create a REST client based on the interface provided. The value could
be a service ID or a logical name. The url indicates the actual URL where the target
service is running. Either name or value is mandatory. In this case, since we have
url, the name attribute is irrelevant.

Use this service proxy to call the Fare service. In the Booking microservice, we have
to tell Spring that Feign clients exist in the Spring Boot application, which are to be
scanned and discovered. This will be done by adding @EnableFeignClients at the
class level of BookingComponent. Optionally, we can also give the package names
to scan.

Change BookingComponent, and make changes to the calling part. This is as simple
as calling another Java interface:

Fare = fareServiceProxy.getFare(record.getFlightNumber(), record.
getFlightDate());

Rerun the Booking microservice to see the effect.

The URL of the Fare service in the FareServiceProxy interface is hardcoded:
url="localhost:8080/fares".

For the time being, we will keep it like this, but we are going to change this later in
this chapter.

Ribbon for load balancing
In the previous setup, we were always running with a single instance of the
microservice. The URL is hardcoded both in client as well as in the service-to-service
calls. In the real world, this is not a recommended approach, since there could be more
than one service instance. If there are multiple instances, then ideally, we should use
a load balancer or a local DNS server to abstract the actual instance locations, and
configure an alias name or the load balancer address in the clients. The load balancer
then receives the alias name, and resolves it with one of the available instances. With
this approach, we can configure as many instances behind a load balancer. It also helps
us to handle server failures transparent to the client.

Scaling Microservices with Spring Cloud

[230]

This is achievable with Spring Cloud Netflix Ribbon. Ribbon is a client-side load
balancer which can do round-robin load balancing across a set of servers. There
could be other load balancing algorithms possible with the Ribbon library. Spring
Cloud offers a declarative way to configure and use the Ribbon client.

As shown in the preceding diagram, the Ribbon client looks for the Config server to
get the list of available microservice instances, and, by default, applies a round-robin
load balancing algorithm.

In order to use the Ribbon client, we will have to add the following dependency
to the pom.xml file:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-ribbon</artifactId>
</dependency>

In case of development from ground up, this can be selected from the Spring
Starter libraries, or from http://start.spring.io/. Ribbon is available under
Cloud Routing:

http://start.spring.io/

Chapter 5

[231]

Update the Booking microservice configuration file, booking-service.properties,
to include a new property to keep the list of the Fare microservices:

fares-proxy.ribbon.listOfServers=localhost:8080,localhost:8081

Going back and editing the FareServiceProxy class created in the previous section
to use the Ribbon client, we note that the value of the @RequestMapping annotations
is changed from /get to /fares/get so that we can move the host name and port to
the configuration easily:

@FeignClient(name="fares-proxy")
@RibbonClient(name="fares")
public interface FareServiceProxy {
 @RequestMapping(value = "fares/get", method=RequestMethod.GET)

We can now run two instances of the Fares microservices. Start one of them on 8080,
and the other one on 8081:

java -jar -Dserver.port=8080 fares-1.0.jar

java -jar -Dserver.port=8081 fares-1.0.jar

Run the Booking microservice. When the Booking microservice is bootstrapped, the
CommandLineRunner automatically inserts one booking record. This will go to the
first server.

When running the website project, it calls the Booking service. This request will go
to the second server.

On the Booking service, we see the following trace, which says there are two servers
enlisted:

DynamicServerListLoadBalancer:{NFLoadBalancer:name=fares-proxy,current

list of Servers=[localhost:8080, localhost:8081],Load balancer stats=Zone
stats: {unknown=[Zone:unknown; Instance count:2; Active connections
count: 0; Circuit breaker tripped count: 0; Active connections per
server: 0.0;]

},

Scaling Microservices with Spring Cloud

[232]

Eureka for registration and discovery
So far, we have achieved externalizing configuration parameters as well as load
balancing across many service instances.

Ribbon-based load balancing is sufficient for most of the microservices requirements.
However, this approach falls short in a couple of scenarios:

•	 If there is a large number of microservices, and if we want to optimize
infrastructure utilization, we will have to dynamically change the number
of service instances and the associated servers. It is not easy to predict and
preconfigure the server URLs in a configuration file.

•	 When targeting cloud deployments for highly scalable microservices, static
registration and discovery is not a good solution considering the elastic
nature of the cloud environment.

•	 In the cloud deployment scenarios, IP addresses are not predictable, and
will be difficult to statically configure in a file. We will have to update the
configuration file every time there is a change in address.

The Ribbon approach partially addresses this issue. With Ribbon, we can
dynamically change the service instances, but whenever we add new service
instances or shut down instances, we will have to manually update the Config
server. Though the configuration changes will be automatically propagated to all
required instances, the manual configuration changes will not work with large scale
deployments. When managing large deployments, automation, wherever possible,
is paramount.

To fix this gap, the microservices should self-manage their life cycle by dynamically
registering service availability, and provision automated discovery for consumers.

Understanding dynamic service registration
and discovery
Dynamic registration is primarily from the service provider's point of view. With
dynamic registration, when a new service is started, it automatically enlists its
availability in a central service registry. Similarly, when a service goes out of service,
it is automatically delisted from the service registry. The registry always keeps
up-to-date information of the services available, as well as their metadata.

Chapter 5

[233]

Dynamic discovery is applicable from the service consumer's point of view. Dynamic
discovery is where clients look for the service registry to get the current state of
the services topology, and then invoke the services accordingly. In this approach,
instead of statically configuring the service URLs, the URLs are picked up from the
service registry.

The clients may keep a local cache of the registry data for faster access. Some registry
implementations allow clients to keep a watch on the items they are interested in.
In this approach, the state changes in the registry server will be propagated to the
interested parties to avoid using stale data.

There are a number of options available for dynamic service registration and
discovery. Netflix Eureka, ZooKeeper, and Consul are available as part of Spring
Cloud, as shown in the http://start.spring.io/ screenshot given next. Etcd
is another service registry available outside of Spring Cloud to achieve dynamic
service registration and discovery. In this chapter, we will focus on the Eureka
implementation:

http://start.spring.io/

Scaling Microservices with Spring Cloud

[234]

Understanding Eureka
Spring Cloud Eureka also comes from Netflix OSS. The Spring Cloud project
provides a Spring-friendly declarative approach for integrating Eureka with
Spring-based applications. Eureka is primarily used for self-registration, dynamic
discovery, and load balancing. Eureka uses Ribbon for load balancing internally:

As shown in the preceding diagram, Eureka consists of a server component
and a client-side component. The server component is the registry in which all
microservices register their availability. The registration typically includes service
identity and its URLs. The microservices use the Eureka client for registering
their availability. The consuming components will also use the Eureka client for
discovering the service instances.

When a microservice is bootstrapped, it reaches out to the Eureka server, and
advertises its existence with the binding information. Once registered, the service
endpoint sends ping requests to the registry every 30 seconds to renew its lease. If a
service endpoint cannot renew its lease in a few attempts, that service endpoint will
be taken out of the service registry. The registry information will be replicated to
all Eureka clients so that the clients have to go to the remote Eureka server for each
and every request. Eureka clients fetch the registry information from the server, and
cache it locally. After that, the clients use that information to find other services. This
information is updated periodically (every 30 seconds) by getting the delta updates
between the last fetch cycle and the current one.

Chapter 5

[235]

When a client wants to contact a microservice endpoint, the Eureka client provides
a list of currently available services based on the requested service ID. The Eureka
server is zone aware. Zone information can also be supplied when registering a
service. When a client requests for a services instance, the Eureka service tries to find
the service running in the same zone. The Ribbon client then load balances across
these available service instances supplied by the Eureka client. The communication
between the Eureka client and the server is done using REST and JSON.

Setting up the Eureka server
In this section, we will run through the steps required for setting up the
Eureka server.

The full source code of this section is available under the
chapter5.eurekaserver project in the code files. Note that the
Eureka server registration and refresh cycles take up to 30 seconds.
Hence, when running services and clients, wait for 40-50 seconds.

1.	 Start a new Spring Starter project, and select Config Client, Eureka Server,
and Actuator:

Scaling Microservices with Spring Cloud

[236]

The project structure of the Eureka server is shown in the following image:

Note that the main application is named EurekaserverApplication.java.

2.	 Rename application.properties to bootstrap.properties since this is
using the Config server. As we did earlier, configure the details of the Config
server in the bootsratp.properties file so that it can locate the Config
server instance. The bootstrap.properties file will look as follows:
spring.application.name=eureka-server1
server.port:8761
spring.cloud.config.uri=http://localhost:8888

The Eureka server can be set up in a standalone mode or in a clustered
mode. We will start with the standalone mode. By default, the Eureka server
itself is another Eureka client. This is particularly useful when there are
multiple Eureka servers running for high availability. The client component
is responsible for synchronizing state from the other Eureka servers. The
Eureka client is taken to its peers by configuring the eureka.client.
serviceUrl.defaultZone property.
In the standalone mode, we point eureka.client.serviceUrl.
defaultZone back to the same standalone instance. Later we will
see how we can run Eureka servers in a clustered mode.

Chapter 5

[237]

3.	 Create a eureka-server1.properties file, and update it in the Git
repository. eureka-server1 is the name of the application given in the
application's bootstrap.properties file in the previous step. As shown
in the following code, serviceUrl points back to the same server. Once the
following properties are added, commit the file to the Git repository:
spring.application.name=eureka-server1
eureka.client.serviceUrl.defaultZone:http://localhost:8761/eureka/
eureka.client.registerWithEureka:false
eureka.client.fetchRegistry:false

4.	 Change the default Application.java. In this example, the package is
also renamed as com.brownfield.pss.eurekaserver, and the class name
changed to EurekaserverApplication. In EurekaserverApplication,
add @EnableEurekaServer:
@EnableEurekaServer
@SpringBootApplication
public class EurekaserverApplication {

5.	 We are now ready to start the Eureka server. Ensure that the Config server is
also started. Right-click on the application and then choose Run As | Spring
Boot App. Once the application is started, open http://localhost:8761 in
a browser to see the Eureka console.

6.	 In the console, note that there is no instance registered under Instances
currently registered with Eureka. Since no services have been started with
the Eureka client enabled, the list is empty at this point.

Scaling Microservices with Spring Cloud

[238]

7.	 Making a few changes to our microservice will enable dynamic registration
and discovery using the Eureka service. To do this, first we have to add the
Eureka dependencies to the pom.xml file. If the services are being built up
fresh using the Spring Starter project, then select Config Client, Actuator,
Web as well as Eureka discovery client as follows:

8.	 Since we are modifying our microservices, add the following additional
dependency to all microservices in their pom.xml files:
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-eureka</artifactId>
</dependency>

9.	 The following property has to be added to all microservices in their
respective configuration files under config-repo. This will help the
microservices to connect to the Eureka server. Commit to Git once updates
are completed:
eureka.client.serviceUrl.defaultZone: http://localhost:8761/
eureka/

Chapter 5

[239]

10.	 Add @EnableDiscoveryClient to all microservices in their respective
Spring Boot main classes. This asks Spring Boot to register these services at
start up to advertise their availability.

11.	 Start all servers except Booking. Since we are using the Ribbon client on the
Booking service, the behavior could be different when we add the Eureka
client in the class path. We will fix this soon.

12.	 Going to the Eureka URL (http://localhost:8761), you can see that all
three instances are up and running:

Time to fix the issue with Booking. We will remove our earlier Ribbon client,
and use Eureka instead. Eureka internally uses Ribbon for load balancing.
Hence, the load balancing behavior will not change.

13.	 Remove the following dependency:
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-ribbon</artifactId>
</dependency>

14.	 Also remove the @RibbonClient(name="fares") annotation from the
FareServiceProxy class.

15.	 Update @FeignClient(name="fares-service") to match the actual
Fare microservices' service ID. In this case, fare-service is the service ID
configured in the Fare microservices' bootstrap.properties. This is the
name that the Eureka discovery client sends to the Eureka server. The service
ID will be used as a key for the services registered in the Eureka server.

16.	 Also remove the list of servers from the booking-service.properties
file. With Eureka, we are going to dynamically discover this list from the
Eureka server:
fares-proxy.ribbon.listOfServers=localhost:8080, localhost:8081

Scaling Microservices with Spring Cloud

[240]

17.	 Start the Booking service. You will see that CommandLineRunner successfully
created a booking, which involves calling the Fare services using the Eureka
discovery mechanism. Go back to the URL to see all the registered services:

18.	 Change the website project's bootstrap.properties file to make use of
Eureka rather than connecting directly to the service instances. We will not
use the Feign client in this case. Instead, for demonstration purposes, we
will use the load balanced RestTemplate. Commit these changes to the
Git repository:
spring.application.name=test-client
eureka.client.serviceUrl.defaultZone: http://localhost:8761/
eureka/

19.	 Add @EnableDiscoveryClient to the Application class to make the client
Eureka-aware.

20.	 Edit both Application.java as well as BrownFieldSiteController.
java. Add three RestTemplate instances. This time, we annotate them with
@Loadbalanced to ensure that we use the load balancing features using
Eureka and Ribbon. RestTemplate cannot be automatically injected.
Hence, we have to provide a configuration entry as follows:
@Configuration
class AppConfiguration {
 @LoadBalanced
 @Bean
 RestTemplate restTemplate() {
 return new RestTemplate();
 }
}
@Autowired
RestTemplate searchClient;

@Autowired
RestTemplate bookingClient;

@Autowired
RestTemplate checkInClient;

Chapter 5

[241]

21.	 We use these RestTemplate instances to call the microservices. Replace the
hardcoded URLs with service IDs that are registered in the Eureka server.
In the following code, we use the service names search-service, book-
service, and checkin-service instead of explicit host names and ports:
Flight[] flights = searchClient.postForObject("http://search-
service/search/get", searchQuery, Flight[].class);

long bookingId = bookingClient.postForObject("http://book-service/
booking/create", booking, long.class);

long checkinId = checkInClient.postForObject("http://checkin-
service/checkin/create", checkIn, long.class);

22.	 We are now ready to run the client. Run the website project. If everything
is fine, the website project's CommandLineRunner will successfully perform
search, booking, and check-in. The same can also be tested using the browser
by pointing the browser to http://localhost:8001.

High availability for Eureka
In the previous example, there was only one Eureka server in standalone mode.
This is not good enough for a real production system.

The Eureka client connects to the server, fetches registry information, and stores it
locally in a cache. The client always works with this local cache. The Eureka client
checks the server periodically for any state changes. In the case of a state change, it
downloads the changes from the server, and updates the cache. If the Eureka server
is not reachable, then the Eureka clients can still work with the last-known state of
the servers based on the data available in the client cache. However, this could lead
to stale state issues quickly.

Scaling Microservices with Spring Cloud

[242]

This section will explore the high availability for the Eureka server. The high
availability architecture is shown in the following diagram:

The Eureka server is built with a peer-to-peer data synchronization mechanism.
The runtime state information is not stored in a database, but managed using an in-
memory cache. The high availability implementation favors availability and partition
tolerance in the CAP theorem, leaving out consistency. Since the Eureka server
instances are synchronized with each other using an asynchronous mechanism,
the states may not always match between server instances. The peer-to-peer
synchronization is done by pointing serviceUrls to each other. If there is more than
one Eureka server, each one has to be connected to at least one of the peer servers.
Since the state is replicated across all peers, Eureka clients can connect to any one of
the available Eureka servers.

The best way to achieve high availability for Eureka is to cluster multiple Eureka
servers, and run them behind a load balancer or a local DNS. The clients always
connect to the server using the DNS/load balancer. At runtime, the load balancer
takes care of selecting the appropriate servers. This load balancer address will be
provided to the Eureka clients.

This section will showcase how to run two Eureka servers in a cluster for high
availability. For this, define two property files: eureka-server1 and eureka-
server2. These are peer servers; if one fails, the other one will take over. Each of
these servers will also act as a client for the other so that they can sync their states.
Two property files are defined in the following snippet. Upload and commit these
properties to the Git repository.

Chapter 5

[243]

The client URLs point to each other, forming a peer network as shown in the
following configuration:

eureka-server1.properties
eureka.client.serviceUrl.defaultZone:http://localhost:8762/eureka/
eureka.client.registerWithEureka:false
eureka.client.fetchRegistry:false

eureka-server2.properties
eureka.client.serviceUrl.defaultZone:http://localhost:8761/eureka/
eureka.client.registerWithEureka:false
eureka.client.fetchRegistry:false

Update the bootstrap.properties file of Eureka, and change the application name
to eureka. Since we are using two profiles, based on the active profile supplied at
startup, the Config server will look for either eureka-server1 or eureka-server2:

spring.application.name=eureka
spring.cloud.config.uri=http://localhost:8888

Start two instances of the Eureka servers, server1 on 8761 and server2 on 8762:

java -jar –Dserver.port=8761 -Dspring.profiles.active=server1 demo-0.0.1-
SNAPSHOT.jar

java -jar –Dserver.port=8762 -Dspring.profiles.active=server2 demo-0.0.1-
SNAPSHOT.jar

All our services still point to the first server, server1. Open both the browser
windows: http://localhost:8761 and http://localhost:8762.

Start all microservices. The one which opened 8761 will immediately reflect the
changes, whereas the other one will take 30 seconds for reflecting the states. Since
both the servers are in a cluster, the state is synchronized between these two servers.
If we keep these servers behind a load balancer/DNS, then the client will always
connect to one of the available servers.

After completing this exercise, switch back to the standalone mode for the remaining
exercises.

Scaling Microservices with Spring Cloud

[244]

Zuul proxy as the API gateway
In most microservice implementations, internal microservice endpoints are not
exposed outside. They are kept as private services. A set of public services will be
exposed to the clients using an API gateway. There are many reasons to do this:

•	 Only a selected set of microservices are required by the clients.
•	 If there are client-specific policies to be applied, it is easy to apply them in

a single place rather than in multiple places. An example of such a scenario
is the cross-origin access policy.

•	 It is hard to implement client-specific transformations at the service endpoint.
•	 If there is data aggregation required, especially to avoid multiple client calls

in a bandwidth-restricted environment, then a gateway is required in the
middle.

Zuul is a simple gateway service or edge service that suits these situations well.
Zuul also comes from the Netflix family of microservice products. Unlike many
enterprise API gateway products, Zuul provides complete control for the developers
to configure or program based on specific requirements:

The Zuul proxy internally uses the Eureka server for service discovery, and Ribbon
for load balancing between service instances.

The Zuul proxy is also capable of routing, monitoring, managing resiliency, security,
and so on. In simple terms, we can consider Zuul a reverse proxy service. With Zuul,
we can even change the behaviors of the underlying services by overriding them at
the API layer.

Chapter 5

[245]

Setting up Zuul
Unlike the Eureka server and the Config server, in typical deployments, Zuul
is specific to a microservice. However, there are deployments in which one API
gateway covers many microservices. In this case, we are going to add Zuul for each
of our microservices: Search, Booking, Fare, and Check-in:

The full source code of this section is available under the chapter5.*-
apigateway project in the code files.

1.	 Convert the microservices one by one. Start with Search API Gateway.
Create a new Spring Starter project, and select Zuul, Config Client, Actuator,
and Eureka Discovery:

Scaling Microservices with Spring Cloud

[246]

The project structure for search-apigateway is shown in the following
diagram:

2.	 The next step is to integrate the API gateway with Eureka and the Config
server. Create a search-apigateway.property file with the contents given
next, and commit to the Git repository.
This configuration also sets a rule on how to forward traffic. In this case, any
request coming on the /api endpoint of the API gateway should be sent to
search-service:
spring.application.name=search-apigateway
zuul.routes.search-apigateway.serviceId=search-service
zuul.routes.search-apigateway.path=/api/**
eureka.client.serviceUrl.defaultZone:http://localhost:8761/eureka/

search-service is the service ID of the Search service, and it will be
resolved using the Eureka server.

3.	 Update the bootstrap.properties file of search-apigateway as follows.
There is nothing new in this configuration—a name to the service, the port,
and the Config server URL:
spring.application.name=search-apigateway
server.port=8095
spring.cloud.config.uri=http://localhost:8888

Chapter 5

[247]

4.	 Edit Application.java. In this case, the package name and the class
name are also changed to com.brownfield.pss.search.apigateway and
SearchApiGateway respectively. Also add @EnableZuulProxy to tell Spring
Boot that this is a Zuul proxy:
@EnableZuulProxy
@EnableDiscoveryClient
@SpringBootApplication
public class SearchApiGateway {

5.	 Run this as a Spring Boot app. Before that, ensure that the Config server, the
Eureka server, and the Search microservice are running.

6.	 Change the website project's CommandLineRunner as well as
BrownFieldSiteController to make use of the API gateway:

Flight[] flights = searchClient.postForObject("http://search-
apigateway/api/search/get", searchQuery, Flight[].class);

In this case, the Zuul proxy acts as a reverse proxy which proxies all microservice
endpoints to consumers. In the preceding example, the Zuul proxy does not add
much value, as we just pass through the incoming requests to the corresponding
backend service.

Zuul is particularly useful when we have one or more requirements like the
following:

•	 Enforcing authentication and other security policies at the gateway instead of
doing that on every microservice endpoint. The gateway can handle security
policies, token handling, and so on before passing the request to the relevant
services behind. It can also do basic rejections based on some business
policies such as blocking requests coming from certain black-listed users.

•	 Business insights and monitoring can be implemented at the gateway
level. Collect real-time statistical data, and push it to an external system
for analysis. This will be handy as we can do this at one place rather than
applying it across many microservices.

•	 API gateways are useful in scenarios where dynamic routing is required
based on fine-grained controls. For example, send requests to different
service instances based on business specific values such as "origin country".
Another example is all requests coming from a region to be sent to one group
of service instances. Yet another example is all requests requesting for a
particular product have to be routed to a group of service instances.

Scaling Microservices with Spring Cloud

[248]

•	 Handling the load shredding and throttling requirements is another scenario
where API gateways are useful. This is when we have to control load based
on set thresholds such as number of requests in a day. For example, control
requests coming from a low-value third party online channel.

•	 The Zuul gateway is useful for fine-grained load balancing scenarios. The
Zuul, Eureka client, and Ribbon together provide fine-grained controls over
the load balancing requirements. Since the Zuul implementation is nothing
but another Spring Boot application, the developer has full control over the
load balancing.

•	 The Zuul gateway is also useful in scenarios where data aggregation
requirements are in place. If the consumer wants higher level coarse-grained
services, then the gateway can internally aggregate data by calling more than
one service on behalf of the client. This is particularly applicable when the
clients are working in low bandwidth environments.

Zuul also provides a number of filters. These filters are classified as pre filters,
routing filters, post filters, and error filters. As the names indicate, these are applied
at different stages of the life cycle of a service call. Zuul also provides an option for
developers to write custom filters. In order to write a custom filter, extend from the
abstract ZuulFilter, and implement the following methods:

public class CustomZuulFilter extends ZuulFilter{
public Object run(){}
public boolean shouldFilter(){}
public int filterOrder(){}
public String filterType(){}

Once a custom filter is implemented, add that class to the main context. In our
example case, add this to the SearchApiGateway class as follows:

@Bean
public CustomZuulFilter customFilter() {
 return new CustomZuulFilter();
}

As mentioned earlier, the Zuul proxy is a Spring Boot service. We can customize the
gateway programmatically in the way we want. As shown in the following code,
we can add custom endpoints to the gateway, which, in turn, can call the backend
services:

@RestController
class SearchAPIGatewayController {

 @RequestMapping("/")
 String greet(HttpServletRequest req){

Chapter 5

[249]

 return "<H1>Search Gateway Powered By Zuul</H1>";
 }
}

In the preceding case, it just adds a new endpoint, and returns a value from the
gateway. We can further use @Loadbalanced RestTemplate to call a backend
service. Since we have full control, we can do transformations, data aggregation,
and so on. We can also use the Eureka APIs to get the server list, and implement
completely independent load-balancing or traffic-shaping mechanisms instead
of the out-of-the-box load balancing features provided by Ribbon.

High availability of Zuul
Zuul is just a stateless service with an HTTP endpoint, hence, we can have as many
Zuul instances as we need. There is no affinity or stickiness required. However,
the availability of Zuul is extremely critical as all traffic from the consumer to the
provider flows through the Zuul proxy. However, the elastic scaling requirements
are not as critical as the backend microservices where all the heavy lifting happens.

The high availability architecture of Zuul is determined by the scenario in which we
are using Zuul. The typical usage scenarios are:

•	 When a client-side JavaScript MVC such as AngularJS accesses Zuul services
from a remote browser.

•	 Another microservice or non-microservice accesses services via Zuul

In some cases, the client may not have the capabilities to use the Eureka client
libraries, for example, a legacy application written on PL/SQL. In some cases,
organization policies do not allow Internet clients to handle client-side load
balancing. In the case of browser-based clients, there are third-party Eureka
JavaScript libraries available.

It all boils down to whether the client is using Eureka client libraries or not. Based on
this, there are two ways we can set up Zuul for high availability.

Scaling Microservices with Spring Cloud

[250]

High availability of Zuul when the client is also a
Eureka client
In this case, since the client is also another Eureka client, Zuul can be configured just
like other microservices. Zuul registers itself to Eureka with a service ID. The clients
then use Eureka and the service ID to resolve Zuul instances:

As shown in the preceding diagram, Zuul services register themselves with Eureka
with a service ID, search-apigateway in our case. The Eureka client asks for the
server list with the ID search-apigateway. The Eureka server returns the list of
servers based on the current Zuul topology. The Eureka client, based on this list
picks up one of the servers, and initiates the call.

As we saw earlier, the client uses the service ID to resolve the Zuul instance. In the
following case, search-apigateway is the Zuul instance ID registered with Eureka:

Flight[] flights = searchClient.postForObject("http://search-
apigateway/api/search/get", searchQuery, Flight[].class);

Chapter 5

[251]

High availability when the client is not a Eureka
client
In this case, the client is not capable of handling load balancing by using the Eureka
server. As shown in the following diagram, the client sends the request to a load
balancer, which in turn identifies the right Zuul service instance. The Zuul instance,
in this case, will be running behind a load balancer such as HAProxy or a hardware
load balancer like NetScaler:

The microservices will still be load balanced by Zuul using the Eureka server.

Completing Zuul for all other services
In order to complete this exercise, add API gateway projects (name them as
*-apigateway) for all our microservices. The following steps are required to achieve
this task:

1.	 Create new property files per service, and check in to the Git repositories.
2.	 Change application.properties to bootstrap.properties, and add the

required configurations.
3.	 Add @EnableZuulProxy to Application.java in each of the *-apigateway

projects.

Scaling Microservices with Spring Cloud

[252]

4.	 Add @EnableDiscoveryClient in all the Application.java files under
each of the *-apigateway projects.

5.	 Optionally, change the package names and file names generated by default.

In the end, we will have the following API gateway projects:

•	 chapter5.fares-apigateway

•	 chapter5.search-apigateway

•	 chapter5.checkin-apigateway

•	 chapter5.book-apigateway

Streams for reactive microservices
Spring Cloud Stream provides an abstraction over the messaging infrastructure. The
underlying messaging implementation can be RabbitMQ, Redis, or Kafka. Spring
Cloud Stream provides a declarative approach for sending and receiving messages:

As shown in the preceding diagram, Cloud Stream works on the concept of a source
and a sink. The source represents the sender perspective of the messaging, and sink
represents the receiver perspective of the messaging.

In the example shown in the diagram, the sender defines a logical queue called
Source.OUTPUT to which the sender sends messages. The receiver defines a logical
queue called Sink.INPUT from which the receiver retrieves messages. The physical
binding of OUTPUT to INPUT is managed through the configuration. In this case,
both link to the same physical queue—MyQueue on RabbitMQ. So, while at one end,
Source.OUTPUT points to MyQueue, on the other end, Sink.INPUT points to the
same MyQueue.

Chapter 5

[253]

Spring Cloud offers the flexibility to use multiple messaging providers in one
application such as connecting an input stream from Kafka to a Redis output stream,
without managing the complexities. Spring Cloud Stream is the basis for message-
based integration. The Cloud Stream Modules subproject is another Spring Cloud
library that provides many endpoint implementations.

As the next step, rebuild the inter-microservice messaging communication with
the Cloud Streams. As shown in the next diagram, we will define a SearchSink
connected to InventoryQ under the Search microservice. Booking will define a
BookingSource for sending inventory change messages connected to InventoryQ.
Similarly, Check-in defines a CheckinSource for sending the check-in messages.
Booking defines a sink, BookingSink, for receiving messages, both bound to the
CheckinQ queue on the RabbitMQ:

In this example, we will use RabbitMQ as the message broker:

1.	 Add the following Maven dependency to Booking, Search, and Check-in, as
these are the three modules using messaging:
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-stream-rabbit
 </artifactId>
</dependency>

Scaling Microservices with Spring Cloud

[254]

2.	 Add the following two properties to booking-service.properties. These
properties bind the logical queue inventoryQ to physical inventoryQ, and
the logical checkinQ to the physical checkinQ:
spring.cloud.stream.bindings.inventoryQ.destination=inventoryQ
spring.cloud.stream.bindings.checkInQ.destination=checkInQ

3.	 Add the following property to search-service.properties. This property
binds the logical queue inventoryQ to the physical inventoryQ:
spring.cloud.stream.bindings.inventoryQ.destination=inventoryQ

4.	 Add the following property to checkin-service.properties. This
property binds the logical queue checkinQ to the physical checkinQ:
spring.cloud.stream.bindings.checkInQ.destination=checkInQ

5.	 Commit all files to the Git repository.
6.	 The next step is to edit the code. The Search microservice consumes a

message from the Booking microservice. In this case, Booking is the source
and Search is the sink.
Add @EnableBinding to the Sender class of the Booking service. This
enables the Cloud Stream to work on autoconfigurations based on the
message broker library available in the class path. In our case, it is RabbitMQ.
The parameter BookingSource defines the logical channels to be used for
this configuration:

@EnableBinding(BookingSource.class)
public class Sender {

7.	 In this case, BookingSource defines a message channel called inventoryQ,
which is physically bound to RabbitMQ's inventoryQ, as configured in the
configuration. BookingSource uses an annotation, @Output, to indicate that
this is of the output type—a message that is outgoing from a module. This
information will be used for autoconfiguration of the message channel:
interface BookingSource {
 public static String InventoryQ="inventoryQ";
 @Output("inventoryQ")
 public MessageChannel inventoryQ();
}

8.	 Instead of defining a custom class, we can also use the default Source class
that comes with Spring Cloud Stream if the service has only one source
and sink:
public interface Source {
 @Output("output")

Chapter 5

[255]

 MessageChannel output();
}

9.	 Define a message channel in the sender, based on BookingSource. The
following code will inject an output message channel with the name
inventory, which is already configured in BookingSource:
 @Output (BookingSource.InventoryQ)
 @Autowired
 private MessageChannel;

10.	 Reimplement the send message method in BookingSender:
public void send(Object message){
 messageChannel.
 send(MessageBuilder.withPayload(message).
 build());
}

11.	 Now add the following to the SearchReceiver class the same way we did
for the Booking service:
@EnableBinding(SearchSink.class)
public class Receiver {

12.	 In this case, the SearchSink interface will look like the following. This will
define the logical sink queue it is connected with. The message channel in
this case is defined as @Input to indicate that this message channel is to
accept messages:
interface SearchSink {
 public static String INVENTORYQ="inventoryQ";
 @Input("inventoryQ")
 public MessageChannel inventoryQ();
}

13.	 Amend the Search service to accept this message:
@ServiceActivator(inputChannel = SearchSink.INVENTORYQ)
public void accept(Map<String,Object> fare){
 searchComponent.updateInventory((String)fare.
 get("FLIGHT_NUMBER"),(String)fare.
 get("FLIGHT_DATE"),(int)fare.
 get("NEW_INVENTORY"));
}

Scaling Microservices with Spring Cloud

[256]

14.	 We will still need the RabbitMQ configurations that we have in our
configuration files to connect to the message broker:
spring.rabbitmq.host=localhost
spring.rabbitmq.port=5672
spring.rabbitmq.username=guest
spring.rabbitmq.password=guest
server.port=8090

15.	 Run all services, and run the website project. If everything is fine, the
website project successfully executes the Search, Booking, and Check-in
functions. The same can also be tested using the browser by pointing
to http://localhost:8001.

Summarizing the BrownField PSS
architecture
The following diagram shows the overall architecture that we have created with
the Config server, Eureka, Feign, Zuul, and Cloud Streams. The architecture also
includes the high availability of all components. In this case, we assume that the
client uses the Eureka client libraries:

Chapter 5

[257]

The summary of the projects and the port they are listening on is given in the
following table:

Microservice Projects Port
Book microservice chapter5.book 8060 to 8064
Check-in microservice chapter5.checkin 8070 to 8074
Fare microservice chapter5.fares 8080 to 8084
Search microservice chapter5.search 8090 to 8094
Website client chapter5.website 8001

Spring Cloud Config server chapter5.configserver 8888/8889
Spring Cloud Eureka server chapter5.eurekaserver 8761/8762
Book API gateway chapter5.book-

apigateway
8095 to 8099

Check-in API gateway chapter5.checkin-
apigateway

8075 to 8079

Fares API gateway chapter5.fares-
apigateway

8085 to 8089

Search API gateway chapter5.search-
apigateway

8065 to 8069

Follow these steps to do a final run:

1.	 Run RabbitMQ.
2.	 Build all projects using pom.xml at the root level:

mvn –Dmaven.test.skip=true clean install

3.	 Run the following projects from their respective folders. Remember to wait
for 40 to 50 seconds before starting the next service. This will ensure that
the dependent services are registered and are available before we start a
new service:
java -jar target/fares-1.0.jar

java -jar target/search-1.0.jar

java -jar target/checkin-1.0.jar

java -jar target/book-1.0.jar

java –jar target/fares-apigateway-1.0.jar

java –jar target/search-apigateway-1.0.jar

java –jar target/checkin-apigateway-1.0.jar

java –jar target/book-apigateway-1.0.jar

java -jar target/website-1.0.jar

Scaling Microservices with Spring Cloud

[258]

4.	 Open the browser window, and point to http://localhost:8001. Follow
the steps mentioned in the Running and testing the project section in Chapter 4,
Microservices Evolution – A Case Study.

Summary
In this chapter, you learned how to scale a Twelve-Factor Spring Boot microservice
using the Spring Cloud project. What you learned was then applied to the
BrownField Airline's PSS microservice that we developed in the previous chapter.

We then explored the Spring Config server for externalizing the microservices'
configuration, and the way to deploy the Config server for high availability.
We also discussed the declarative service calls using Feign, examined the use of
Ribbon and Eureka for load balancing, dynamic service registration, and discovery.
Implementation of an API gateway was examined by implementing Zuul. Finally,
we concluded with a reactive style integration of microservices using Spring
Cloud Stream.

BrownField Airline's PSS microservices are now deployable on the Internet scale.
Other Spring Cloud components such as Hyterix, Sleuth, and so on will be covered
in Chapter 7, Logging and Monitoring Microservices. The next chapter will demonstrate
autoscaling features, extending the BrownField PSS implementation.

[259]

Autoscaling Microservices
Spring Cloud provides the support essential for the deployment of microservices at
scale. In order to get the full power of a cloud-like environment, the microservices
instances should also be capable of scaling out and shrinking automatically based
on traffic patterns.

This chapter will detail out how to make microservices elastically grow and shrink
by effectively using the actuator data collected from Spring Boot microservices to
control the deployment topology by implementing a simple life cycle manager.

By the end of this chapter, you will learn about the following topics:

•	 The basic concept of autoscaling and different approaches for autoscaling
•	 The importance and capabilities of a life cycle manager in the context

of microservices
•	 Examining the custom life cycle manager to achieve autoscaling
•	 Programmatically collecting statistics from the Spring Boot actuator and

using it to control and shape incoming traffic

Autoscaling Microservices

[260]

Reviewing the microservice capability
model
This chapter will cover the Application Lifecycle Management capability in the
microservices capability model discussed in Chapter 3, Applying Microservices
Concepts, highlighted in the following diagram:

We will see a basic version of the life cycle manager in this chapter, which will be
enhanced in later chapters.

Scaling microservices with Spring Cloud
In Chapter 5, Scaling Microservices with Spring Cloud, you learned how to scale Spring
Boot microservices using Spring Cloud components. The two key concepts of Spring
Cloud that we implemented are self-registration and self-discovery. These two
capabilities enable automated microservices deployments. With self-registration,
microservices can automatically advertise the service availability by registering
service metadata to a central service registry as soon as the instances are ready
to accept traffic. Once the microservices are registered, consumers can consume
the newly registered services from the very next moment by discovering service
instances using the registry service. Registry is at the heart of this automation.

Chapter 6

[261]

This is quite different from the traditional clustering approach employed by the
traditional JEE application servers. In the case of JEE application servers, the server
instances' IP addresses are more or less statically configured in a load balancer.
Therefore, the cluster approach is not the best solution for automatic scaling in
Internet-scale deployments. Also, clusters impose other challenges, such as they
have to have exactly the same version of binaries on all cluster nodes. It is also
possible that the failure of one cluster node can poison other nodes due to the
tight dependency between nodes.

The registry approach decouples the service instances. It also eliminates the need to
manually maintain service addresses in the load balancer or configure virtual IPs:

As shown in the diagram, there are three key components in our automated
microservices deployment topology:

•	 Eureka is the central registry component for microservice registration and
discovery. REST APIs are used by both consumers as well as providers to
access the registry. The registry also holds the service metadata such as the
service identity, host, port, health status, and so on.

•	 The Eureka client, together with the Ribbon client, provide client-side
dynamic load balancing. Consumers use the Eureka client to look up the
Eureka server to identify the available instances of a target service. The
Ribbon client uses this server list to load-balance between the available
microservice instances. In a similar way, if the service instance goes out of
service, these instances will be taken out of the Eureka registry. The load
balancer automatically reacts to these dynamic topology changes.

•	 The third component is the microservices instances developed using Spring
Boot with the actuator endpoints enabled.

Autoscaling Microservices

[262]

However, there is one gap in this approach. When there is need for an additional
microservice instance, a manual task is required to kick off a new instance. In an
ideal scenario, the starting and stopping of microservice instances also require
automation.

For example, when there is a requirement to add another Search microservice
instance to handle the increase in traffic volumes or a load burst scenario, the
administrator has to manually bring up a new instance. Also, when the Search
instance is idle for some time, it needs to be manually taken out of service to
have optimal infrastructure usage. This is especially relevant when services
run on a pay-as-per-usage cloud environment.

Understanding the concept of
autoscaling
Autoscaling is an approach to automatically scaling out instances based on the
resource usage to meet the SLAs by replicating the services to be scaled.

The system automatically detects an increase in traffic, spins up additional instances,
and makes them available for traffic handling. Similarly, when the traffic volumes
go down, the system automatically detects and reduces the number of instances by
taking active instances back from the service:

As shown in the preceding diagram, autoscaling is done, generally, using a set of
reserve machines.

Chapter 6

[263]

As many of the cloud subscriptions are based on a pay-as-you-go model, this is an
essential capability when targeting cloud deployments. This approach is often called
elasticity. It is also called dynamic resource provisioning and deprovisioning.
Autoscaling is an effective approach specifically for microservices with varying
traffic patterns. For example, an Accounting service would have high traffic during
month ends and year ends. There is no point in permanently provisioning instances
to handle these seasonal loads.

In the autoscaling approach, there is often a resource pool with a number of spare
instances. Based on the demand, instances will be moved from the resource pool to
the active state to meet the surplus demand. These instances are not pretagged for
any particular microservices or prepackaged with any of the microservice binaries.
In advanced deployments, the Spring Boot binaries are downloaded on demand
from an artifact repository such as Nexus or Artifactory.

The benefits of autoscaling
There are many benefits in implementing the autoscaling mechanism. In traditional
deployments, administrators reserve a set of servers against each application. With
autoscaling, this preallocation is no longer required. This prefixed server allocation
may result in underutilized servers. In this case, idle servers cannot be utilized even
when neighboring services struggle for additional resources.

With hundreds of microservice instances, preallocating a fixed number of servers to
each of the microservices is not cost effective. A better approach is to reserve a number
of server instances for a group of microservices without preallocating or tagging them
against a microservice. Instead, based on the demand, a group of services can share a
set of available resources. By doing so, microservices can be dynamically moved across
the available server instances by optimally using the resources:

Autoscaling Microservices

[264]

As shown in the preceding diagram, there are three instances of the M1 microservice,
one instance of M2, and one instance of M3 up and running. There is another server
kept unallocated. Based on the demand, the unallocated server can be used for
any of the microservices: M1, M2, or M3. If M1 has more service requests, then the
unallocated instance will be used for M1. When the service usage goes down, the
server instance will be freed up and moved back to the pool. Later, if the M2 demand
increases, the same server instance can be activated using M2.

Some of the key benefits of autoscaling are:

•	 It has high availability and is fault tolerant: As there are multiple service
instances, even if one fails, another instance can take over and continue
serving clients. This failover will be transparent to the consumers. If no other
instance of this service is available, the autoscaling service will recognize this
situation and bring up another server with the service instance. As the whole
process of bringing up or bringing down instances is automatic, the overall
availability of the services will be higher than the systems implemented
without autoscaling. The systems without autoscaling require manual
intervention to add or remove service instances, which will be hard to
manage in large deployments.
For example, assume that two of instances of the Booking service are
running. If there is an increase in the traffic flow, in a normal scenario,
the existing instance might become overloaded. In most of the scenarios,
the entire set of services will be jammed, resulting in service unavailability.
In the case of autoscaling, a new Booking service instance can be brought
up quickly. This will balance the load and ensure service availability.

•	 It increases scalability: One of the key benefits of autoscaling is horizontal
scalability. Autoscaling allows us to selectively scale up or scale down
services automatically based on traffic patterns.

•	 It has optimal usage and is cost saving: In a pay-as-you-go subscription
model, billing is based on actual resource utilization. With the autoscaling
approach, instances will be started and shut down based on the demand.
Hence, resources are optimally utilized, thereby saving cost.

Chapter 6

[265]

•	 It gives priority to certain services or group of services: With autoscaling,
it is possible to give priority to certain critical transactions over low-value
transactions. This will be done by removing an instance from a low-value
service and reallocating it to a high-value service. This will also eliminate
situations where a low-priority transaction heavily utilizes resources when
high-value transactions are cramped up for resources.

For instance, the Booking and Reports services run with two instances, as
shown in the preceding diagram. Let's assume that the Booking service is a
revenue generation service and therefore has a higher value than the Reports
service. If there are more demands for the Booking service, then one can set
policies to take one Reports service out of the service and release this server
for the Booking service.

Different autoscaling models
Autoscaling can be applied at the application level or at the infrastructure level.
In a nutshell, application scaling is scaling by replicating application binaries only,
whereas infrastructure scaling is replicating the entire virtual machine, including
application binaries.

Autoscaling Microservices

[266]

Autoscaling an application
In this scenario, scaling is done by replicating the microservices, not the underlying
infrastructure, such as virtual machines. The assumption is that there is a pool of
VMs or physical infrastructures available to scale up microservices. These VMs have
the basic image fused with any dependencies, such as JRE. It is also assumed that
microservices are homogeneous in nature. This gives flexibility in reusing the same
virtual or physical machines for different services:

As shown in the preceding diagram, in scenario A, VM3 is used for Service 1,
whereas in scenario B, the same VM3 is used for Service 2. In this case, we only
swapped the application library and not the underlying infrastructure.

This approach gives faster instantiation as we are only handling the application
binaries and not the underlying VMs. The switching is easier and faster as the
binaries are smaller in size and there is no OS boot required either. However, the
downside of this approach is that if certain microservices require OS-level tuning
or use polyglot technologies, then dynamically swapping microservices will not
be effective.

Autoscaling the infrastructure
In contrast to the previous approach, in this case, the infrastructure is also provisioned
automatically. In most cases, this will create a new VM on the fly or destroy the VMs
based on the demand:

Chapter 6

[267]

As shown in the preceding diagram, the reserve instances are created as VM images
with predefined service instances. When there is demand for Service 1, VM3 is
moved to an active state. When there is a demand for Service 2, VM4 is moved
to the active state.

This approach is efficient if the applications depend upon the parameters and
libraries at the infrastructure level, such as the operating system. Also, this approach
is better for polyglot microservices. The downside is the heavy nature of VM images
and the time required to spin up a new VM. Lightweight containers such as Dockers
are preferred in such cases instead of traditional heavyweight virtual machines.

Autoscaling in the cloud
Elasticity or autoscaling is one of the fundamental features of most cloud providers.
Cloud providers use infrastructure scaling patterns, as discussed in the previous
section. These are typically based on a set of pooled machines.

For example, in AWS, these are based on introducing new EC2 instances with a
predefined AMI. AWS supports autoscaling with the help of autoscaling groups.
Each group is set with a minimum and maximum number of instances. AWS
ensures that the instances are scaled on demand within these bounds. In case of
predictable traffic patterns, provisioning can be configured based on timelines.
AWS also provides ability for applications to customize autoscaling policies.

Microsoft Azure also supports autoscaling based on the utilization of resources such
as the CPU, message queue length, and so on. IBM Bluemix supports autoscaling
based on resources such as CPU usage.

Other PaaS platforms, such as CloudBees and OpenShift, also support autoscaling
for Java applications. Pivotal Cloud Foundry supports autoscaling with the help of
Pivotal Autoscale. Scaling policies are generally based on resource utilization, such
as the CPU and memory thresholds.

Autoscaling Microservices

[268]

There are components that run on top of the cloud and provide fine-grained controls
to handle autoscaling. Netflix Fenzo, Eucalyptus, Boxfuse, and Mesosphere are some
of the components in this category.

Autoscaling approaches
Autoscaling is handled by considering different parameters and thresholds. In this
section, we will discuss the different approaches and policies that are typically
applied to take decisions on when to scale up or down.

Scaling with resource constraints
This approach is based on real-time service metrics collected through monitoring
mechanisms. Generally, the resource-scaling approach takes decisions based on
the CPU, memory, or the disk of machines. This can also be done by looking at the
statistics collected on the service instances themselves, such as heap memory usage.

A typical policy may be spinning up another instance when the CPU utilization
of the machine goes beyond 60%. Similarly, if the heap size goes beyond a certain
threshold, we can add a new instance. The same applies to downsizing the compute
capacity when the resource utilization goes below a set threshold. This is done by
gradually shutting down servers:

In typical production scenarios, the creation of additional services is not done on the
first occurrence of a threshold breach. The most appropriate approach is to define a
sliding window or a waiting period.

Chapter 6

[269]

The following are some of the examples:

•	 An example of a response sliding window is if 60% of the response time of
a particular transaction is consistently more than the set threshold value in a
60-second sampling window, increase service instances

•	 In a CPU sliding window, if the CPU utilization is consistently beyond 70%
in a 5 minutes sliding window, then a new instance is created

•	 An example of the exception sliding window is if 80% of the transactions
in a sliding window of 60 seconds or 10 consecutive executions result in a
particular system exception, such as a connection timeout due to exhausting
the thread pool, then a new service instance is created

In many cases, we will set a lower threshold than the actual expected thresholds.
For example, instead of setting the CPU utilization threshold at 80%, set it at 60% so
that the system gets enough time to spin up an instance before it stops responding.
Similarly, when scaling down, we use a lower threshold than the actual. For example,
we will use 40% CPU utilization to scale down instead of 60%. This allows us to have
a cool-down period so that there will not be any resource struggle when shutting
down instances.

Resource-based scaling is also applicable to service-level parameters such as the
throughput of the service, latency, applications thread pool, connection pool, and
so on. These can also be at the application level, such as the number of sales orders
processing in a service instance, based on internal benchmarking.

Scaling during specific time periods
Time-based scaling is an approach to scaling services based on certain periods of
the day, month, or year to handle seasonal or business peaks. For example, some
services may experience a higher number of transactions during office hours and
a considerably low number of transactions outside office hours. In this case, during
the day, services autoscale to meet the demand and automatically downsize during
the non-office hours:

Autoscaling Microservices

[270]

Many airports worldwide impose restrictions on night-time landing. As a result,
the number of passengers checking in at the airports during the night time is less
compared to the day time. Hence, it is cost effective to reduce the number of instances
during the night time.

Scaling based on the message queue length
This is particularly useful when the microservices are based on asynchronous
messaging. In this approach, new consumers are automatically added when the
messages in the queue go beyond certain limits:

This approach is based on the competing consumer pattern. In this case, a pool
of instances is used to consume messages. Based on the message threshold, new
instances are added to consume additional messages.

Scaling based on business parameters
In this case, adding instances is based on certain business parameters—for example,
spinning up a new instance just before handling sales closing transactions. As soon
as the monitoring service receives a preconfigured business event (such as sales
closing minus 1 hour), a new instance will be brought up in anticipation of large
volumes of transactions. This will provide fine-grained control on scaling based
on business rules:

Chapter 6

[271]

Predictive autoscaling
Predictive scaling is a new paradigm of autoscaling that is different from the
traditional real-time metrics-based autoscaling. A prediction engine will take
multiple inputs, such as historical information, current trends, and so on, to predict
possible traffic patterns. Autoscaling is done based on these predictions. Predictive
autoscaling helps avoid hardcoded rules and time windows. Instead, the system
can automatically predict such time windows. In more sophisticated deployments,
predictive analysis may use cognitive computing mechanisms to predict autoscaling.

In the cases of sudden traffic spikes, traditional autoscaling may not help. Before
the autoscaling component can react to the situation, the spike would have hit and
damaged the system. The predictive system can understand these scenarios and
predict them before their actual occurrence. An example will be handling a flood
of requests immediately after a planned outage.

Netflix Scryer is an example of such a system that can predict resource requirements
in advance.

Autoscaling Microservices

[272]

Autoscaling BrownField PSS
microservices
In this section, we will examine how to enhance microservices developed in
Chapter 5, Scaling Microservices with Spring Cloud, for autoscaling. We need a
component to monitor certain performance metrics and trigger autoscaling.
We will call this component the life cycle manager.

The service life cycle manager, or the application life cycle manager, is responsible
for detecting scaling requirements and adjusting the number of instances accordingly.
It is responsible for starting and shutting down instances dynamically.

In this section, we will take a look at a primitive autoscaling system to understand
the basic concepts, which will be enhanced in later chapters.

The capabilities required for an autoscaling
system
A typical autoscaling system has capabilities as shown in the following diagram:

Chapter 6

[273]

The components involved in the autoscaling ecosystem in the context of microservices
are explained as follows:

•	 Microservices: These are sets of the up-and-running microservice instances
that keep sending health and metrics information. Alternately, these services
expose actuator endpoints for metrics collection. In the preceding diagram,
these are represented as Microservice 1 through Microservice 4.

•	 Service Registry: A service registry keeps track of all the services, their
health states, their metadata, and their endpoint URI.

•	 Load Balancer: This is a client-side load balancer that looks up the service
registry to get up-to-date information about the available service instances.

•	 Lifecycle Manager: The life cycle manger is responsible for autoscaling,
which has the following subcomponents:

°° Metrics Collector: A metrics collection unit is responsible for
collecting metrics from all service instances. The life cycle manager
will aggregate the metrics. It may also keep a sliding time window.
The metrics could be infrastructure-level metrics, such as CPU usage,
or application-level metrics, such as transactions per minute.

°° Scaling policies: Scaling policies are nothing but sets of rules
indicating when to scale up and scale down microservices—for
example, 90% of CPU usage above 60% in a sliding window of 5
minutes.

°° Decision Engine: A decision engine is responsible for making
decisions to scale up and scale down based on the aggregated
metrics and scaling policies.

°° Deployment Rules: The deployment engine uses deployment rules
to decide which parameters to consider when deploying services.
For example, a service deployment constraint may say that the
instance must be distributed across multiple availability regions
or a 4 GB minimum of memory required for the service.

°° Deployment Engine: The deployment engine, based on the
decisions of the decision engine, can start or stop microservice
instances or update the registry by altering the health states of
services. For example, it sets the health status as "out of service"
to take out a service temporarily.

Autoscaling Microservices

[274]

Implementing a custom life cycle manager
using Spring Boot
The life cycle manager introduced in this section is a minimal implementation
to understand autoscaling capabilities. In later chapters, we will enhance this
implementation with containers and cluster management solutions. Ansible,
Marathon, and Kubernetes are some of the tools useful in building this capability.

In this section, we will implement an application-level autoscaling component
using Spring Boot for the services developed in Chapter 5, Scaling Microservices
with Spring Cloud.

Understanding the deployment topology
The following diagram shows a sample deployment topology of BrownField
PSS microservices:

As shown in the diagram, there are four physical machines. Eight VMs are created
from four physical machines. Each physical machine is capable of hosting two VMs,
and each VM is capable of running two Spring Boot instances, assuming that all
services have the same resource requirements.

Chapter 6

[275]

Four VMs, VM1 through VM4, are active and are used to handle traffic. VM5 to
VM8 are kept as reserve VMs to handle scalability. VM5 and VM6 can be used for
any of the microservices and can also be switched between microservices based
on scaling demands. Redundant services use VMs created from different physical
machines to improve fault tolerance.

Our objective is to scale out any services when there is increase in traffic flow using
four VMs, VM5 through VM8, and scale down when there is not enough load. The
architecture of our solution is as follows.

Understanding the execution flow
Have a look at the following flowchart:

As shown in the preceding diagram, the following activities are important for us:

•	 The Spring Boot service represents microservices such as Search, Book, Fares,
and Check-in. Services at startup automatically register endpoint details
to the Eureka registry. These services are actuator-enabled, so the life cycle
manager can collect metrics from the actuator endpoints.

Autoscaling Microservices

[276]

•	 The life cycle manager service is nothing but another Spring Boot application.
The life cycle manager has a metrics collector that runs a background job,
periodically polls the Eureka server, and gets details of all the service
instances. The metrics collector then invokes the actuator endpoints of each
microservice registered in the Eureka registry to get the health and metrics
information. In a real production scenario, a subscription approach for data
collection is better.

•	 With the collected metrics information, the life cycle manager executes a
list of policies and derives decisions on whether to scale up or scale down
instances. These decisions are either to start a new service instance of a
particular type on a particular VM or to shut down a particular instance.

•	 In the case of shutdown, it connects to the server using an actuator endpoint
and calls the shutdown service to gracefully shut down an instance.

•	 In the case of starting a new instance, the deployment engine of the life cycle
manager uses the scaling rules and decides where to start the new instance
and what parameters are to be used when starting the instance. Then, it
connects to the respective VMs using SSH. Once connected, it executes a
preinstalled script (or passes this script as a part of the execution) by passing
the required constraints as a parameter. This script fetches the application
library from a central Nexus repository in which the production binaries
are kept and initiates it as a Spring Boot application. The port number is
parameterized by the life cycle manager. SSH needs to be enabled on the
target machines.

In this example, we will use TPM (Transactions Per Minute) or RPM (Requests Per
Minute) as sampler metrics for decision making. If the Search service has more than
10 TPM, then it will spin up a new Search service instance. Similarly, if the TPM is
below 2, one of the instances will be shut down and released back to the pool.

When starting a new instance, the following policies will be applied:

•	 The number of service instances at any point should be a minimum of 1 and a
maximum of 4. This also means that at least one service instance will always
be up and running.

•	 A scaling group is defined in such a way that a new instance is created on a
VM that is on a different physical machine. This will ensure that the services
run across different physical machines.

These policies could be further enhanced. The life cycle manager ideally provides
options to customize these rules through REST APIs or Groovy scripts.

Chapter 6

[277]

A walkthrough of the life cycle manager code
We will take a look at how a simple life cycle manager is implemented. This section
will be a walkthrough of the code to understand the different components of the life
cycle manager.

The full source code is available under the Chapter 6 project
in the code files. The chapter5.configserver, chapter5.
eurekaserver, chapter5.search, and chapter5.search-
apigateway are copied and renamed as chapter6.*, respectively.

Perform the following steps to implement the custom life cycle manager:

1.	 Create a new Spring Boot application and name it chapter6.
lifecyclemanager. The project structure is shown in the following diagram:

Autoscaling Microservices

[278]

The flowchart for this example is as shown in the following diagram:

The components of this diagram are explained in details here.

2.	 Create a MetricsCollector class with the following method. At the
startup of the Spring Boot application, this method will be invoked using
CommandLineRunner, as follows:
public void start(){
 while(true){
 eurekaClient.getServices().forEach(service -> { System.
out.println("discovered service "+ service);
 Map metrics = restTemplate.getForObject("http://"+service+"/
metrics",Map.class);
 decisionEngine.execute(service, metrics);
 });
 }
}

The preceding method looks for the services registered in the Eureka
server and gets all the instances. In the real world, rather than polling,
the instances should publish metrics to a common place, where metrics
aggregation will happen.

Chapter 6

[279]

3.	 The following DecisionEngine code accepts the metric and applies certain
scaling policies to determine whether the service requires scaling up or not:
 public boolean execute(String serviceId, Map metrics){
 if(scalingPolicies.getPolicy(serviceId).
 execute(serviceId, metrics)){
 return deploymentEngine.scaleUp(deploymentRules.
getDeploymentRules(serviceId), serviceId);
 }
 return false;
 }

4.	 Based on the service ID, the policies that are related to the services will
be picked up and applied. In this case, a minimal TPM scaling policy is
implemented in TpmScalingPolicy, as follows:
public class TpmScalingPolicy implements ScalingPolicy {
 public boolean execute(String serviceId, Map metrics){
 if(metrics.containsKey("gauge.servo.tpm")){
 Double tpm = (Double) metrics.get("gauge.servo.tpm");
 System.out.println("gauge.servo.tpm " + tpm);
 return (tpm > 10);
 }
 return false;
 }
}

5.	 If the policy returns true, DecisionEngine then invokes
DeploymentEngine to spin up another instance. DeploymentEngine
makes use of DeploymentRules to decide how to execute scaling. The
rules can enforce the number of min and max instances, in which region
or machine the new instance has to be started, the resources required for
the new instance, and so on. DummyDeploymentRule simply makes sure
the max instance is not more than 2.

6.	 DeploymentEngine, in this case, uses the JSch (Java Secure Channel) library
from JCraft to SSH to the destination server and start the service. This requires
the following additional Maven dependency:
<dependency>
 <groupId>com.jcraft</groupId>
 <artifactId>jsch</artifactId>
 <version>0.1.53</version>
</dependency>

Autoscaling Microservices

[280]

7.	 The current SSH implementation is kept simple enough as we will change
this in future chapters. In this example, DeploymentEngine sends the
following command over the SSH library on the target machine:
 String command ="java -jar -Dserver.port=8091 ./work/codebox/
chapter6/chapter6.search/target/search-1.0.jar";

Integration with Nexus happens from the target machine using Linux scripts
with Nexus CLI or using curl. In this example, we will not explore Nexus.

8.	 The next step is to change the Search microservice to expose a new gauge for
TPM. We have to change all the microservices developed earlier to submit
this additional metric.
We will only examine Search in this chapter, but in order to complete it,
all the services have to be updated. In order to get the gauge.servo.tpm
metrics, we have to add TPMCounter to all the microservices.
The following code counts the transactions over a sliding window of 1
minute:

class TPMCounter {
 LongAdder count;
 Calendar expiry = null;
 TPMCounter(){
 reset();
 }
 void reset (){
 count = new LongAdder();
 expiry = Calendar.getInstance();
 expiry.add(Calendar.MINUTE, 1);
 }
 boolean isExpired(){
 return Calendar.getInstance().after(expiry);
 }
 void increment(){
 if(isExpired()){
 reset();
 }
 count.increment();
 }
}

Chapter 6

[281]

9.	 The following code needs to be added to SearchController to set the
tpm value:
class SearchRestController {
 TPMCounter tpm = new TPMCounter();
 @Autowired
 GaugeService gaugeService;
 //other code

10.	 The following code is from the get REST endpoint (the search method) of
SearchRestController, which submits the tpm value as a gauge to the
actuator endpoint:
tpm.increment();
gaugeService.submit("tpm", tpm.count.intValue());

Running the life cycle manager
Perform the following steps to run the life cycle manager developed in the
previous section:

1.	 Edit DeploymentEngine.java and update the password to reflect the
machine's password, as follows. This is required for the SSH connection:
session.setPassword("rajeshrv");

2.	 Build all the projects by running Maven from the root folder (Chapter 6)
via the following command:
mvn -Dmaven.test.skip=true clean install

3.	 Then, run RabbitMQ, as follows:
./rabbitmq-server

4.	 Ensure that the Config server is pointing to the right configuration
repository. We need to add a property file for the life cycle manager.

5.	 Run the following commands from the respective project folders:
java -jar target/config-server-0.0.1-SNAPSHOT.jar

java -jar target/eureka-server-0.0.1-SNAPSHOT.jar

java -jar target/lifecycle-manager-0.0.1-SNAPSHOT.jar

java -jar target/search-1.0.jar

java -jar target/search-apigateway-1.0.jar

java -jar target/website-1.0.jar

Autoscaling Microservices

[282]

6.	 Once all the services are started, open a browser window and load
http://localhost:8001.

7.	 Execute the flight search 11 times, one after the other, within a minute.
This will trigger the decision engine to instantiate another instance
of the Search microservice.

8.	 Open the Eureka console (http://localhost:8761) and watch for a
second SEARCH-SERVICE. Once the server is started, the instances
will appear as shown here:

Summary
In this chapter, you learned the importance of autoscaling when deploying
large-scale microservices.

We also explored the concept of autoscaling and the different models of
and approaches to autoscaling, such as the time-based, resource-based, queue
length-based, and predictive ones. We then reviewed the role of a life cycle
manager in the context of microservices and reviewed its capabilities. Finally,
we ended this chapter by reviewing a sample implementation of a simple
custom life cycle manager in the context of BrownField PSS microservices.

Autoscaling is an important supporting capability required when dealing with
large-scale microservices. We will discuss a more mature implementation of
the life cycle manager in Chapter 9, Managing Dockerized Microservices with
Mesos and Marathon.

The next chapter will explore the logging and monitoring capabilities that are
indispensable for successful microservice deployments.

[283]

Logging and Monitoring
Microservices

One of the biggest challenges due to the very distributed nature of Internet-scale
microservices deployment is the logging and monitoring of individual microservices.
It is difficult to trace end-to-end transactions by correlating logs emitted by different
microservices. As with monolithic applications, there is no single pane of glass to
monitor microservices.

This chapter will cover the necessity and importance of logging and monitoring in
microservice deployments. This chapter will further examine the challenges and
solutions to address logging and monitoring with a number of potential architectures
and technologies.

By the end of this chapter, you will learn about:

•	 The different options, tools, and technologies for log management
•	 The use of Spring Cloud Sleuth in tracing microservices
•	 The different tools for end-to-end monitoring of microservices
•	 The use of Spring Cloud Hystrix and Turbine for circuit monitoring
•	 The use of data lakes in enabling business data analysis

Logging and Monitoring Microservices

[284]

Reviewing the microservice capability
model
In this chapter, we will explore the following microservice capabilities from the
microservices capability model discussed in Chapter 3, Applying Microservices Concepts:

•	 Central Log Management
•	 Monitoring and Dashboards
•	 Dependency Management (part of Monitoring and Dashboards)
•	 Data Lake

Understanding log management
challenges
Logs are nothing but streams of events coming from a running process. For
traditional JEE applications, a number of frameworks and libraries are available to
log. Java Logging (JUL) is an option off the shelf from Java itself. Log4j, Logback,
and SLF4J are some of the other popular logging frameworks available. These
frameworks support both UDP as well as TCP protocols for logging. Applications
send log entries to the console or to the filesystem. File recycling techniques are
generally employed to avoid logs filling up all the disk space.

Chapter 7

[285]

One of the best practices of log handling is to switch off most of the log entries in
production due to the high cost of disk IOs. Not only do disk IOs slow down the
application, but they can also severely impact scalability. Writing logs into the disk
also requires high disk capacity. An out-of-disk-space scenario can bring down the
application. Logging frameworks provide options to control logging at runtime to
restrict what is to be printed and what not. Most of these frameworks provide fine-
grained control over the logging controls. They also provide options to change these
configurations at runtime.

On the other hand, logs may contain important information and have high value if
properly analyzed. Therefore, restricting log entries essentially limits our ability to
understand the application's behavior.

When moved from traditional to cloud deployment, applications are no longer
locked to a particular, predefined machine. Virtual machines and containers are not
hardwired with an application. The machines used for deployment can change from
time to time. Moreover, containers such as Docker are ephemeral. This essentially
means that one cannot rely on the persistent state of the disk. Logs written to the disk
are lost once the container is stopped and restarted. Therefore, we cannot rely on the
local machine's disk to write log files.

As we discussed in Chapter 1, Demystifying Microservices, one of the principles of the
Twelve-Factor app is to avoid routing or storing log files by the application itself. In
the context of microservices, they will run on isolated physical or virtual machines,
resulting in fragmented log files. In this case, it is almost impossible to trace end-to-
end transactions that span multiple microservices:

Logging and Monitoring Microservices

[286]

As shown in the diagram, each microservice emits logs to a local filesystem. In
this case, microservice M1 calls M3. These services write their logs to their own
local filesystems. This makes it harder to correlate and understand the end-to-end
transaction flow. Also, as shown in the diagram, there are two instances of M1 and
two instances of M2 running on two different machines. In this case, log aggregation
at the service level is hard to achieve.

A centralized logging solution
In order to address the challenges stated earlier, traditional logging solutions
require serious rethinking. The new logging solution, in addition to addressing the
preceding challenges, is also expected to support the capabilities summarized here:

•	 The ability to collect all log messages and run analytics on top of the log
messages

•	 The ability to correlate and track transactions end to end
•	 The ability to keep log information for longer time periods for trending and

forecasting
•	 The ability to eliminate dependency on the local disk system
•	 The ability to aggregate log information coming from multiple sources such

as network devices, operating system, microservices, and so on

The solution to these problems is to centrally store and analyze all log messages,
irrespective of the source of log. The fundamental principle employed in the new
logging solution is to detach log storage and processing from service execution
environments. Big data solutions are better suited to storing and processing large
numbers of log messages more effectively than storing and processing them in
microservice execution environments.

In the centralized logging solution, log messages will be shipped from the execution
environment to a central big data store. Log analysis and processing will be handled
using big data solutions:

Chapter 7

[287]

As shown in the preceding logical diagram, there are a number of components in the
centralized logging solution, as follows:

•	 Log streams: These are streams of log messages coming out of source
systems. The source system can be microservices, other applications, or
even network devices. In typical Java-based systems, these are equivalent to
streaming Log4j log messages.

•	 Log shippers: Log shippers are responsible for collecting the log messages
coming from different sources or endpoints. The log shippers then send these
messages to another set of endpoints, such as writing to a database, pushing
to a dashboard, or sending it to stream-processing endpoint for further real-
time processing.

•	 Log store: A log store is the place where all log messages are stored for real-
time analysis, trending, and so on. Typically, a log store is a NoSQL database,
such as HDFS, capable of handling large data volumes.

•	 Log stream processor: The log stream processor is capable of analyzing real-
time log events for quick decision making. A stream processor takes actions
such as sending information to a dashboard, sending alerts, and so on. In
the case of self-healing systems, stream processors can even take actions to
correct the problems.

•	 Log dashboard: A dashboard is a single pane of glass used to display log
analysis results such as graphs and charts. These dashboards are meant for
the operational and management staff.

The benefit of this centralized approach is that there is no local I/O or blocking
disk writes. It also does not use the local machine's disk space. This architecture is
fundamentally similar to the lambda architecture for big data processing.

To read more on the Lambda architecture, go to http://lambda-
architecture.net.

It is important to have in each log message a context, message, and correlation ID.
The context typically has the timestamp, IP address, user information, process details
(such as service, class, and functions), log type, classification, and so on. The message
will be plain and simple free text information. The correlation ID is used to establish
the link between service calls so that calls spanning microservices can be traced.

Logging and Monitoring Microservices

[288]

The selection of logging solutions
There are a number of options available to implement a centralized logging solution.
These solutions use different approaches, architectures, and technologies. It is
important to understand the capabilities required and select the right solution that
meets the needs.

Cloud services
There are a number of cloud logging services available, such as the SaaS solution.

Loggly is one of the most popular cloud-based logging services. Spring Boot
microservices can use Loggly's Log4j and Logback appenders to directly stream log
messages into the Loggly service.

If the application or service is deployed in AWS, AWS CloudTrail can be integrated
with Loggly for log analysis.

Papertrial, Logsene, Sumo Logic, Google Cloud Logging, and Logentries are
examples of other cloud-based logging solutions.

The cloud logging services take away the overhead of managing complex
infrastructures and large storage solutions by providing them as simple-to-integrate
services. However, latency is one of the key factors to be considered when selecting
cloud logging as a service.

Off-the-shelf solutions
There are many purpose-built tools to provide end-to-end log management
capabilities that are installable locally in an on-premises data center or in the cloud.

Graylog is one of the popular open source log management solutions. Graylog uses
Elasticsearch for log storage and MongoDB as a metadata store. Graylog also uses
GELF libraries for Log4j log streaming.

Splunk is one of the popular commercial tools available for log management and
analysis. Splunk uses the log file shipping approach, compared to log streaming used
by other solutions to collect logs.

Best-of-breed integration
The last approach is to pick and choose best-of-breed components and build a
custom logging solution.

Chapter 7

[289]

Log shippers
There are log shippers that can be combined with other tools to build an end-to-end
log management solution. The capabilities differ between different log shipping
tools.

Logstash is a powerful data pipeline tool that can be used to collect and ship log
files. Logstash acts as a broker that provides a mechanism to accept streaming
data from different sources and sync them to different destinations. Log4j and
Logback appenders can also be used to send log messages directly from Spring Boot
microservices to Logstash. The other end of Logstash is connected to Elasticsearch,
HDFS, or any other database.

Fluentd is another tool that is very similar to Logstash, as is Logspout, but the latter
is more appropriate in a Docker container-based environment.

Log stream processors
Stream-processing technologies are optionally used to process log streams on the
fly. For example, if a 404 error is continuously occurring as a response to a particular
service call, it means there is something wrong with the service. Such situations have
to be handled as soon as possible. Stream processors are pretty handy in such cases
as they are capable of reacting to certain streams of events that a traditional reactive
analysis can't.

A typical architecture used for stream processing is a combination of Flume and
Kafka together with either Storm or Spark Streaming. Log4j has Flume appenders,
which are useful to collect log messages. These messages are pushed into distributed
Kafka message queues. The stream processors collect data from Kafka and process
them on the fly before sending it to Elasticsearch and other log stores.

Spring Cloud Stream, Spring Cloud Stream Modules, and Spring Cloud Data Flow
can also be used to build the log stream processing.

Log storage
Real-time log messages are typically stored in Elasticsearch. Elasticsearch allows
clients to query based on text-based indexes. Apart from Elasticsearch, HDFS is also
commonly used to store archived log messages. MongoDB or Cassandra is used to
store summary data, such as monthly aggregated transaction counts. Offline log
processing can be done using Hadoop's MapReduce programs.

Logging and Monitoring Microservices

[290]

Dashboards
The last piece required in the central logging solution is a dashboard. The most
commonly used dashboard for log analysis is Kibana on top of an Elasticsearch data
store. Graphite and Grafana are also used to display log analysis reports.

A custom logging implementation
The tools mentioned before can be leveraged to build a custom end-to-end logging
solution. The most commonly used architecture for custom log management is a
combination of Logstash, Elasticsearch, and Kibana, also known as the ELK stack.

The full source code of this chapter is available under the Chapter
7 project in the code files. Copy chapter5.configserver,
chapter5.eurekaserver, chapter5.search, chapter5.
search-apigateway, and chapter5.website into a new STS
workspace and rename them chapter7.*.

The following diagram shows the log monitoring flow:

In this section, a simple implementation of a custom logging solution using the ELK
stack will be examined.

Follow these steps to implement the ELK stack for logging:

1.	 Download and install Elasticsearch, Kibana, and Logstash from https://
www.elastic.co.

2.	 Update the Search microservice (chapter7.search). Review and ensure that
there are some log statements in the Search microservice. The log statements
are nothing special but simple log statements using slf4j, as follows:
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
 //other code goes here
 private static final Logger logger = LoggerFactory.
 getLogger(SearchRestController.class);
//other code goes here

https://www.elastic.co
https://www.elastic.co

Chapter 7

[291]

logger.info("Looking to load flights...");
for (Flight flight : flightRepository.
 findByOriginAndDestinationAndFlightDate
 ("NYC", "SFO", "22-JAN-16")) {
 logger.info(flight.toString());
}

3.	 Add the logstash dependency to integrate logback to Logstash in the
Search service's pom.xml file, as follows:
<dependency>
 <groupId>net.logstash.logback</groupId>
 <artifactId>logstash-logback-encoder</artifactId>
 <version>4.6</version>
</dependency>

4.	 Also, downgrade the logback version to be compatible with Spring
1.3.5.RELEASE via the following line:
<logback.version>1.1.6</logback.version>

5.	 Override the default Logback configuration. This can be done by adding a
new logback.xml file under src/main/resources, as follows:
<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <include resource="org/springframework/boot/logging/logback/
defaults.xml"/>
 <include resource="org/springframework/boot/logging/logback/
console-appender.xml" />
 <appender name="stash" class="net.logstash.logback.
 appender.LogstashTcpSocketAppender">
 <destination>localhost:4560</destination>
 <!-- encoder is required -->
 <encoder class="net.logstash.logback.encoder.
 LogstashEncoder" />
 </appender>
 <root level="INFO">
 <appender-ref ref="CONSOLE" />
 <appender-ref ref="stash" />
 </root>
</configuration>

The preceding configuration overrides the default Logback configuration by
adding a new TCP socket appender, which streams all the log messages to
a Logstash service, which is listening on port 4560. It is important to add an
encoder, as mentioned in the previous configuration.

Logging and Monitoring Microservices

[292]

6.	 Create a configuration as shown in the following code and store it in a
logstash.conf file. The location of this file is irrelevant as it will be passed
as an argument when starting Logstash. This configuration will take input
from the socket listening on 4560 and send the output to Elasticsearch
running on 9200. The stdout is optional and is set to debug:
input {
 tcp {
 port => 4560
 host => localhost
 }
}
output {
elasticsearch { hosts => ["localhost:9200"] }
 stdout { codec => rubydebug }
}

7.	 Run Logstash, Elasticsearch, and Kibana from their respective installation
folders, as follows:
./bin/logstash -f logstash.conf

./bin/elasticsearch

./bin/kibana

8.	 Run the Search microservice. This will invoke the unit test cases and result in
printing the log statements mentioned before.

9.	 Go to a browser and access Kibana, at http://localhost:5601.
10.	 Go to Settings | Configure an index pattern, as shown here:

Chapter 7

[293]

11.	 Go to the Discover menu to see the logs. If everything is successful, we
will see the Kibana screenshot as follows. Note that the log messages are
displayed in the Kibana screen.

Kibana provides out-of-the-box features to build summary charts and graphs
using log messages:

Distributed tracing with Spring Cloud Sleuth
The previous section addressed microservices' distributed and fragmented logging
issue by centralizing the log data. With the central logging solution, we can have all
the logs in a central storage. However, it is still almost impossible to trace end-to-end
transactions. In order to do end-to-end tracking, transactions spanning microservices
need to have a correlation ID.

Twitter's Zipkin, Cloudera's HTrace, and Google's Dapper systems are examples of
distributed tracing systems. Spring Cloud provides a wrapper component on top of
these using the Spring Cloud Sleuth library.

Logging and Monitoring Microservices

[294]

Distributed tracing works with the concepts of span and trace. The span is a unit of
work; for example, calling a service is identified by a 64-bit span ID. A set of spans
form a tree-like structure is called a trace. Using the trace ID, the call can be tracked
end to end:

As shown in the diagram, Microservice 1 calls Microservice 2, and Microservice
2 calls Microservice 3. In this case, as shown in the diagram, the same trace ID is
passed across all microservices, which can be used to track transactions end to end.

In order to demonstrate this, we will use the Search API Gateway and Search
microservices. A new endpoint has to be added in Search API Gateway (chapter7.
search-apigateway) that internally calls the Search service to return data. Without
the trace ID, it is almost impossible to trace or link calls coming from the Website to
Search API Gateway to Search microservice. In this case, it only involves two to three
services, whereas in a complex environment, there could be many interdependent
services.

Follow these steps to create the example using Sleuth:

1.	 Update Search and Search API Gateway. Before this, the Sleuth dependency
needs to be added to the respective POM files, which can be done via the
following code:
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-sleuth</artifactId>
</dependency>

2.	 In the case of building a new service, select Sleuth and Web, as shown here:

Chapter 7

[295]

3.	 Add the Logstash dependency to the Search service as well as the Logback
configuration, as in the previous example.

4.	 The next step is to add two more properties in the Logback configuration,
as follows:
<property name="spring.application.name" value="search-service"/>
<property name="CONSOLE_LOG_PATTERN" value="%d{yyyy-MM-dd
HH:mm:ss.SSS} [${spring.application.name}] [trace=%X{X-Trace-Id:-
},span=%X{X-Span-Id:-}] [%15.15t] %-40.40logger{39}: %m%n"/>

The first property is the name of the application. The names given in this are
the service IDs: search-service and search-apigateway in Search and
Search API Gateway, respectively. The second property is an optional pattern
used to print the console log messages with a trace ID and span ID. The
preceding change needs to be applied to both the services.

5.	 Add the following piece of code to advise Sleuth when to start a new span ID
in the Spring Boot Application class. In this case, AlwaysSampler is used to
indicate that the span ID has to be created every time a call hits the service.
This change needs to be applied in both the services:
 @Bean
 public AlwaysSampler defaultSampler() {
 return new AlwaysSampler();
 }

Logging and Monitoring Microservices

[296]

6.	 Add a new endpoint to Search API Gateway, which will call the Search
service as follows. This is to demonstrate the propagation of the trace ID
across multiple microservices. This new method in the gateway returns the
operating hub of the airport by calling the Search service, as follows:
 @RequestMapping("/hubongw")
 String getHub(HttpServletRequest req){
 logger.info("Search Request in API gateway for getting Hub,
forwarding to search-service ");
 String hub = restTemplate.getForObject("http://search-service/
search/hub", String.class);
 logger.info("Response for hub received, Hub "+ hub);
 return hub;
 }

7.	 Add another endpoint in the Search service, as follows:
 @RequestMapping("/hub")
 String getHub(){
 logger.info("Searching for Hub, received from search-
apigateway ");
 return "SFO";
 }

8.	 Once added, run both the services. Hit the gateway's new hub on the
gateway (/hubongw) endpoint using a browser (http://localhost:8095/
hubongw).
As mentioned earlier, the Search API Gateway service is running on 8095
and the Search service is running on 8090.

9.	 Look at the console logs to see the trace ID and span IDs printed. The first
print is from Search API Gateway, and the second one came from the Search
service. Note that the trace IDs are the same in both the cases, as follows:
2016-04-02 17:24:37.624 [search-apigateway] [trace=8a7e278f-7b2b-
43e3-a45c-69d3ca66d663,span=8a7e278f-7b2b-43e3-a45c-69d3ca66d663]
[io-8095-exec-10] c.b.p.s.a.SearchAPIGatewayController :
Response for hub received, Hub DXB

2016-04-02 17:24:37.612 [search-service] [trace=8a7e278f-7b2b-
43e3-a45c-69d3ca66d663,span=fd309bba-5b4d-447f-a5e1-7faaab90cfb1]
[nio-8090-exec-1] c.b.p.search.component.SearchComponent :
Searching for Hub, received from search-apigateway

Chapter 7

[297]

10.	 Open the Kibana console and search for the trace ID using this trace ID
printed in the console. In this case, it is 8a7e278f-7b2b-43e3-a45c-
69d3ca66d663. As shown in the following screenshot, with a trace ID,
one can trace service calls that span multiple services:

Monitoring microservices
Microservices are truly distributed systems with a fluid deployment topology.
Without sophisticated monitoring in place, operations teams may run into trouble
managing large-scale microservices. Traditional monolithic application deployments
are limited to a number of known services, instances, machines, and so on. This
is easier to manage compared to the large number of microservices instances
potentially running across different machines. To add more complication, these
services dynamically change their topologies. A centralized logging capability only
addresses part of the issue. It is important for operations teams to understand the
runtime deployment topology and also the behavior of the systems. This demands
more than a centralized logging can offer.

In general application, monitoring is more a collection of metrics, aggregation, and
their validation against certain baseline values. If there is a service-level breach,
then monitoring tools generate alerts and send them to administrators. With
hundreds and thousands of interconnected microservices, traditional monitoring
does not really offer true value. The one-size-fits-all approach to monitoring or
monitoring everything with a single pane of glass is not easy to achieve in large-scale
microservices.

Logging and Monitoring Microservices

[298]

One of the main objectives of microservice monitoring is to understand the behavior
of the system from a user experience point of view. This will ensure that the end-to-
end behavior is consistent and is in line with what is expected by the users.

Monitoring challenges
Similar to the fragmented logging issue, the key challenge in monitoring
microservices is that there are many moving parts in a microservice ecosystem.

The typical issues are summarized here:

•	 The statistics and metrics are fragmented across many services, instances,
and machines.

•	 Heterogeneous technologies may be used to implement microservices, which
makes things even more complex. A single monitoring tool may not give all
the required monitoring options.

•	 Microservices deployment topologies are dynamic, making it impossible to
preconfigure servers, instances, and monitoring parameters.

Many of the traditional monitoring tools are good to monitor monolithic applications
but fall short in monitoring large-scale, distributed, interlinked microservice systems.
Many of the traditional monitoring systems are agent-based preinstall agents on the
target machines or application instances. This poses two challenges:

•	 If the agents require deep integration with the services or operating systems,
then this will be hard to manage in a dynamic environment

•	 If these tools impose overheads when monitoring or instrumenting the
application, it may lead to performance issues

Many traditional tools need baseline metrics. Such systems work with preset rules,
such as if the CPU utilization goes above 60% and remains at this level for 2 minutes,
then an alert should be sent to the administrator. It is extremely hard to preconfigure
these values in large, Internet-scale deployments.

New-generation monitoring applications learn the application's behavior by
themselves and set automatic threshold values. This frees up administrators from
doing this mundane task. Automated baselines are sometimes more accurate than
human forecasts:

Chapter 7

[299]

As shown in the diagram, the key areas of microservices monitoring are:

•	 Metrics sources and data collectors: Metrics collection at the source is done
either by the server pushing metrics information to a central collector or
by embedding lightweight agents to collect information. Data collectors
collect monitoring metrics from different sources, such as network, physical
machines, containers, software components, applications, and so on. The
challenge is to collect this data using autodiscovery mechanisms instead of
static configurations.
This is done by either running agents on the source machines, streaming data
from the sources, or polling at regular intervals.

•	 Aggregation and correlation of metrics: Aggregation capability is required
for aggregating metrics collected from different sources, such as user
transaction, service, infrastructure, network, and so on. Aggregation can be
challenging as it requires some level of understanding of the application's
behavior, such as service dependencies, service grouping, and so on. In many
cases, these are automatically formulated based on the metadata provided by
the sources.
Generally, this is done by an intermediary that accept the metrics.

•	 Processing metrics and actionable insights: Once data is aggregated, the
next step is to do the measurement. Measurements are typically done using
set thresholds. In the new-generation monitoring systems, these thresholds
are automatically discovered. Monitoring tools then analyze the data and
provide actionable insights.
These tools may use big data and stream analytics solutions.

•	 Alerting, actions, and dashboards: As soon as issues are detected, they have
to be notified to the relevant people or systems. Unlike traditional systems,
the microservices monitoring systems should be capable of taking actions on
a real-time basis. Proactive monitoring is essential to achieving self-healing.
Dashboards are used to display SLAs, KPIs, and so on.
Dashboards and alerting tools are capable of handling these requirements.

Logging and Monitoring Microservices

[300]

Microservice monitoring is typically done with three approaches. A combination of
these is really required for effective monitoring:

•	 Application performance monitoring (APM): This is more of a traditional
approach to system metrics collection, processing, alerting, and dashboard
rendering. These are more from the system's point of view. Application
topology discovery and visualization are new capabilities implemented
by many of the APM tools. The capabilities vary between different APM
providers.

•	 Synthetic monitoring: This is a technique that is used to monitor the
system's behavior using end-to-end transactions with a number of test
scenarios in a production or production-like environment. Data is collected to
validate the system's behavior and potential hotspots. Synthetic monitoring
helps understand the system dependencies as well.

•	 Real user monitoring (RUM) or user experience monitoring: This is
typically a browser-based software that records real user statistics, such as
response time, availability, and service levels. With microservices, with more
frequent release cycle and dynamic topology, user experience monitoring is
more important.

Monitoring tools
There are many tools available to monitor microservices. There are also overlaps
between many of these tools. The selection of monitoring tools really depends upon
the ecosystem that needs to be monitored. In most cases, more than one tool is
required to monitor the overall microservice ecosystem.

The objective of this section is to familiarize ourselves with a number of common
microservices-friendly monitoring tools:

•	 AppDynamics, Dynatrace, and New Relic are top commercial vendors
in the APM space, as per Gartner Magic Quadrant 2015. These tools are
microservice friendly and support microservice monitoring effectively
in a single console. Ruxit, Datadog, and Dataloop are other commercial
offerings that are purpose-built for distributed systems that are essentially
microservices friendly. Multiple monitoring tools can feed data to Datadog
using plugins.

•	 Cloud vendors come with their own monitoring tools, but in many
cases, these monitoring tools alone may not be sufficient for large-scale
microservice monitoring. For instance, AWS uses CloudWatch and Google
Cloud Platform uses Cloud Monitoring to collect information from various
sources.

Chapter 7

[301]

•	 Some of the data collecting libraries, such as Zabbix, statd, collectd, jmxtrans,
and so on operate at a lower level in collecting runtime statistics, metrics,
gauges, and counters. Typically, this information is fed into data collectors
and processors such as Riemann, Datadog, and Librato, or dashboards such
as Graphite.

•	 Spring Boot Actuator is one of the good vehicles to collect microservices
metrics, gauges, and counters, as we discussed in Chapter 2, Building
Microservices with Spring Boot. Netflix Servo, a metric collector similar to
Actuator, and the QBit and Dropwizard metrics also fall in the same category
of metric collectors. All these metrics collectors need an aggregator and
dashboard to facilitate full-sized monitoring.

•	 Monitoring through logging is popular but a less effective approach
in microservices monitoring. In this approach, as discussed in the
previous section, log messages are shipped from various sources, such as
microservices, containers, networks, and so on to a central location. Then,
we can use the logs files to trace transactions, identify hotspots, and so on.
Loggly, ELK, Splunk, and Trace are candidates in this space.

•	 Sensu is a popular choice for microservice monitoring from the open source
community. Weave Scope is another tool, primarily targeting containerized
deployments. Spigo is one of the purpose-built microservices monitoring
systems closely aligned with the Netflix stack.

•	 Pingdom, New Relic Synthetics, Runscope, Catchpoint, and so on provide
options for synthetic transaction monitoring and user experience monitoring
on live systems.

•	 Circonus is classified more as a DevOps monitoring tool but can also do
microservices monitoring. Nagios is a popular open source monitoring tool
but falls more into the traditional monitoring system.

•	 Prometheus provides a time series database and visualization GUI useful in
building custom monitoring tools.

Monitoring microservice dependencies
When there are a large number of microservices with dependencies, it is important
to have a monitoring tool that can show the dependencies among microservices. It is
not a scalable approach to statically configure and manage these dependencies. There
are many tools that are useful in monitoring microservice dependencies, as follows:

•	 Mentoring tools such as AppDynamics, Dynatrace, and New Relic can draw
dependencies among microservices. End-to-end transaction monitoring can
also trace transaction dependencies. Other monitoring tools, such as Spigo,
are also useful for microservices dependency management.

Logging and Monitoring Microservices

[302]

•	 CMDB tools such as Device42 or purpose-built tools such as Accordance are
useful in managing the dependency of microservices. Veritas Risk Advisor
(VRA) is also useful for infrastructure discovery.

•	 A custom implementation with a Graph database, such as Neo4j, is also
useful. In this case, a microservice has to preconfigure its direct and indirect
dependencies. At the startup of the service, it publishes and cross-checks its
dependencies with a Neo4j database.

Spring Cloud Hystrix for fault-tolerant
microservices
This section will explore Spring Cloud Hystrix as a library for a fault-tolerant and
latency-tolerant microservice implementation. Hystrix is based on the fail fast and
rapid recovery principles. If there is an issue with a service, Hystrix helps isolate it. It
helps to recover quickly by falling back to another preconfigured fallback service.
Hystrix is another battle-tested library from Netflix. Hystrix is based on the circuit
breaker pattern.

Read more about the circuit breaker pattern at https://msdn.
microsoft.com/en-us/library/dn589784.aspx.

In this section, we will build a circuit breaker with Spring Cloud Hystrix. Perform
the following steps to change the Search API Gateway service to integrate it with
Hystrix:

1.	 Update the Search API Gateway service. Add the Hystrix dependency to the
service. If developing from scratch, select the following libraries:

https://msdn.microsoft.com/en-us/library/dn589784.aspx
https://msdn.microsoft.com/en-us/library/dn589784.aspx

Chapter 7

[303]

2.	 In the Spring Boot Application class, add @EnableCircuitBreaker.
This command will tell Spring Cloud Hystrix to enable a circuit breaker
for this application. It also exposes the /hystrix.stream endpoint for
metrics collection.

3.	 Add a component class to the Search API Gateway service with a method;
in this case, this is getHub annotated with @HystrixCommand. This tells
Spring that this method is prone to failure. Spring Cloud libraries wrap these
methods to handle fault tolerance and latency tolerance by enabling circuit
breaker. The Hystrix command typically follows with a fallback method. In
case of failure, Hystrix automatically enables the fallback method mentioned
and diverts traffic to the fallback method. As shown in the following code, in
this case, getHub will fall back to getDefaultHub:
@Component
class SearchAPIGatewayComponent {
 @LoadBalanced
 @Autowired
 RestTemplate restTemplate;

Logging and Monitoring Microservices

[304]

 @HystrixCommand(fallbackMethod = "getDefaultHub")
 public String getHub(){
 String hub = restTemplate.getForObject("http://search-service/
search/hub", String.class);
 return hub;
 }
 public String getDefaultHub(){
 return "Possibily SFO";
 }
}

4.	 The getHub method of SearchAPIGatewayController calls the getHub
method of SearchAPIGatewayComponent, as follows:
@RequestMapping("/hubongw")
String getHub(){
 logger.info("Search Request in API gateway for getting Hub,
forwarding to search-service ");
 return component.getHub();
}

5.	 The last part of this exercise is to build a Hystrix Dashboard. For this, build
another Spring Boot application. Include Hystrix, Hystrix Dashboard, and
Actuator when building this application.

6.	 In the Spring Boot Application class, add the @EnableHystrixDashboard
annotation.

7.	 Start the Search service, Search API Gateway, and Hystrix Dashboard
applications. Point the browser to the Hystrix Dashboard application's URL.
In this example, the Hystrix Dashboard is started on port 9999. So, open the
URL http://localhost:9999/hystrix.

8.	 A screen similar to the following screenshot will be displayed. In the Hystrix
Dashboard, enter the URL of the service to be monitored.
In this case, Search API Gateway is running on port 8095. Hence, the
hystrix.stream URL will be http://localhost:8095/hytrix.stream,
as shown:

Chapter 7

[305]

9.	 The Hystrix Dashboard will be displayed as follows:

Logging and Monitoring Microservices

[306]

Note that at least one transaction has to be executed to see the display.
This can be done by hitting http://localhost:8095/hubongw.

10.	 Create a failure scenario by shutting down the Search service. Note
that the fallback method will be called when hitting the URL http://
localhost:8095/hubongw.

11.	 If there are continuous failures, then the circuit status will be changed to
open. This can be done by hitting the preceding URL a number of times. In
the open state, the original service will no longer be checked. The Hystrix
Dashboard will show the status of the circuit as Open, as shown in the
following screenshot. Once a circuit is opened, periodically, the system will
check for the original service status for recovery. When the original service
is back, the circuit breaker will fall back to the original service and the status
will be set to Closed:

To know the meaning of each of these parameters, visit the Hystrix wiki
at https://github.com/Netflix/Hystrix/wiki/Dashboard.

https://github.com/Netflix/Hystrix/wiki/Dashboard

Chapter 7

[307]

Aggregating Hystrix streams with Turbine
In the previous example, the /hystrix.stream endpoint of our microservice was
given in the Hystrix Dashboard. The Hystrix Dashboard can only monitor one
microservice at a time. If there are many microservices, then the Hystrix Dashboard
pointing to the service has to be changed every time we switch the microservices to
monitor. Looking into one instance at a time is tedious, especially when there are
many instances of a microservice or multiple microservices.

We have to have a mechanism to aggregate data coming from multiple /hystrix.
stream instances and consolidate it into a single dashboard view. Turbine does
exactly the same thing. Turbine is another server that collects Hystrix streams from
multiple instances and consolidates them into one /turbine.stream instance.
Now, the Hystrix Dashboard can point to /turbine.stream to get the consolidated
information:

Turbine currently works only with different hostnames. Each instance
has to be run on separate hosts. If you are testing multiple services
locally on the same host, then update the host file (/etc/hosts) to
simulate multiple hosts. Once done, bootstrap.properties has to
be configured as follows:

eureka.instance.hostname: localdomain2

This example showcases how to use Turbine to monitor circuit breakers across
multiple instances and services. We will use the Search service and Search API
Gateway in this example. Turbine internally uses Eureka to resolve service IDs
that are configured for monitoring.

Logging and Monitoring Microservices

[308]

Perform the following steps to build and execute this example:

1.	 The Turbine server can be created as just another Spring Boot application
using Spring Boot Starter. Select Turbine to include the Turbine libraries.

2.	 Once the application is created, add @EnableTurbine to the main Spring
Boot Application class. In this example, both Turbine and Hystrix Dashboard
are configured to be run on the same Spring Boot application. This is
possible by adding the following annotations to the newly created Turbine
application:
@EnableTurbine
@EnableHystrixDashboard
@SpringBootApplication
public class TurbineServerApplication {

3.	 Add the following configuration to the .yaml or property file to point to the
instances that we are interested in monitoring:
spring:
 application:
 name : turbineserver
turbine:
 clusterNameExpression: new String('default')
 appConfig : search-service,search-apigateway
server:
 port: 9090
eureka:
 client:
 serviceUrl:
 defaultZone: http://localhost:8761/eureka/

4.	 The preceding configuration instructs the Turbine server to look up the
Eureka server to resolve the search-service and search-apigateway
services. The search-service and search-apigateways service IDs are
used to register services with Eureka. Turbine uses these names to resolve the
actual service host and port by checking with the Eureka server. It will then
use this information to read /hystrix.stream from each of these instances.
Turbine will then read all the individual Hystrix streams, aggregate all of
them, and expose them under the Turbine server's /turbine.stream URL.

5.	 The cluster name expression is pointing to the default cluster as there is
no explicit cluster configuration done in this example. If the clusters are
manually configured, then the following configuration has to be used:
turbine:
 aggregator:
 clusterConfig: [comma separated clusternames]

Chapter 7

[309]

6.	 Change the Search service's SearchComponent to add another circuit breaker,
as follows:
 @HystrixCommand(fallbackMethod = "searchFallback")
 public List<Flight> search(SearchQuery query){

7.	 Also, add @EnableCircuitBreaker to the main Application class in the
Search service.

8.	 Add the following configuration to bootstrap.properties of the Search
service. This is required because all the services are running on the same
host:
Eureka.instance.hostname: localdomain1

9.	 Similarly, add the following in bootstrap.properties of the Search API
Gateway service. This is to make sure that both the services use different
hostnames:
eureka.instance.hostname: localdomain2

10.	 In this example, we will run two instances of search-apigateway: one on
localdomain1:8095 and another one on localdomain2:8096. We will also
run one instance of search-service on localdomain1:8090.

11.	 Run the microservices with command-line overrides to manage different host
addresses, as follows:
java -jar -Dserver.port=8096 -Deureka.instance.
hostname=localdomain2 -Dserver.address=localdomain2 target/
chapter7.search-apigateway-1.0.jar

java -jar -Dserver.port=8095 -Deureka.instance.
hostname=localdomain1 -Dserver.address=localdomain1 target/
chapter7.search-apigateway-1.0.jar

java -jar -Dserver.port=8090 -Deureka.instance.
hostname=localdomain1 -Dserver.address=localdomain1 target/
chapter7.search-1.0.jar

12.	 Open Hystrix Dashboard by pointing the browser to http://
localhost:9090/hystrix.

13.	 Instead of giving /hystrix.stream, this time, we will point to /turbine.
stream. In this example, the Turbine stream is running on 9090. Hence, the
URL to be given in the Hystrix Dashboard is http://localhost:9090/
turbine.stream.

14.	 Fire a few transactions by opening a browser window and hitting the
following two URLs: http://localhost:8095/hubongw and http://
localhost:8096/hubongw.
Once this is done, the dashboard page will show the getHub service.

Logging and Monitoring Microservices

[310]

15.	 Run chapter7.website. Execute the search transaction using the website
http://localhost:8001.
After executing the preceding search, the dashboard page will show
search-service as well. This is shown in the following screenshot:

As we can see in the dashboard, search-service is coming from the Search
microservice, and getHub is coming from Search API Gateway. As we have two
instances of Search API Gateway, getHub is coming from two hosts, indicated by
Hosts 2.

Data analysis using data lakes
Similarly to the scenario of fragmented logs and monitoring, fragmented data is
another challenge in the microservice architecture. Fragmented data poses challenges
in data analytics. This data may be used for simple business event monitoring, data
auditing, or even deriving business intelligence out of the data.

A data lake or data hub is an ideal solution to handling such scenarios. An event-
sourced architecture pattern is generally used to share the state and state changes
as events with an external data store. When there is a state change, microservices
publish the state change as events. Interested parties may subscribe to these events
and process them based on their requirements. A central event store may also
subscribe to these events and store them in a big data store for further analysis.

Chapter 7

[311]

One of the commonly followed architectures for such data handling is shown in the
following diagram:

State change events generated from the microservice—in our case, the Search,
Booking, and Check-In events—are pushed to a distributed high-performance
messaging system, such as Kafka. A data ingestion service, such as Flume, can
subscribe to these events and update them to an HDFS cluster. In some cases, these
messages will be processed in real time by Spark Streaming. To handle heterogeneous
sources of events, Flume can also be used between event sources and Kafka.

Spring Cloud Streams, Spring Cloud Streams modules, and Spring Data Flow are
also useful as alternatives for high-velocity data ingestion.

Summary
In this chapter, you learned about the challenges around logging and monitoring
when dealing with Internet-scale microservices.

We explored the various solutions for centralized logging. You also learned about
how to implement a custom centralized logging using Elasticsearch, Logstash, and
Kibana (ELK). In order to understand distributed tracing, we upgraded BrownField
microservices using Spring Cloud Sleuth.

In the second half of this chapter, we went deeper into the capabilities required
for microservices monitoring solutions and different approaches to monitoring.
Subsequently, we examined a number of tools available for microservices
monitoring.

Logging and Monitoring Microservices

[312]

The BrownField microservices are further enhanced with Spring Cloud Hystrix
and Turbine to monitor latencies and failures in inter-service communications. The
examples also demonstrated how to use the circuit breaker pattern to fall back to
another service in case of failures.

Finally, we also touched upon the importance of data lakes and how to integrate a
data lake architecture in a microservice context.

Microservice management is another important challenge we need to tackle when
dealing with large-scale microservice deployments. The next chapter will explore
how containers can help in simplifying microservice management.

[313]

Containerizing Microservices
with Docker

In the context of microservices, containerized deployment is the icing on the cake.
It helps microservices be more autonomous by self-containing the underlying
infrastructure, thereby making the microservices cloud neutral.

This chapter will introduce the concepts and relevance of virtual machine images
and the containerized deployment of microservices. Then, this chapter will further
familiarize readers with building Docker images for the BrownField PSS microservices
developed with Spring Boot and Spring Cloud. Finally, this chapter will also touch
base on how to manage, maintain, and deploy Docker images in a production-like
environment.

By the end of this chapter, you will learn about:

•	 The concept of containerization and its relevance in the context
of microservices

•	 Building and deploying microservices as Docker images and containers
•	 Using AWS as an example of cloud-based Docker deployments

Containerizing Microservices with Docker

[314]

Reviewing the microservice capability
model
In this chapter, we will explore the following microservice capabilities from the
microservice capability model discussed in Chapter 3, Applying Microservices Concepts:

•	 Containers and virtual machines
•	 The private/public cloud
•	 The microservices repository

The model is shown in the following diagram:

Understanding the gaps in BrownField
PSS microservices
In Chapter 5, Scaling Microservices with Spring Cloud, BrownField PSS microservices
were developed using Spring Boot and Spring Cloud. These microservices
are deployed as versioned fat JAR files on bare metals, specifically on a local
development machine.

Chapter 8

[315]

In Chapter 6, Autoscaling Microservices, the autoscaling capability was added with the
help of a custom life cycle manager. In Chapter 7, Logging and Monitoring Microservices,
challenges around logging and monitoring were addressed using centralized logging
and monitoring solutions.

There are still a few gaps in our BrownField PSS implementation. So far, the
implementation has not used any cloud infrastructure. Dedicated machines, as
in traditional monolithic application deployments, are not the best solution for
deploying microservices. Automation such as automatic provisioning, the ability to
scale on demand, self-service, and payment based on usage are essential capabilities
required to manage large-scale microservice deployments efficiently. In general, a
cloud infrastructure provides all these essential capabilities. Therefore, a private or
public cloud with the capabilities mentioned earlier is better suited to deploying
Internet-scale microservices.

Also, running one microservice instance per bare metal is not cost effective.
Therefore, in most cases, enterprises end up deploying multiple microservices
on a single bare metal server. Running multiple microservices on a single bare
metal could lead to a "noisy neighbor" problem. There is no isolation between the
microservice instances running on the same machine. As a result, services deployed
on a single machine may eat up others' space, thus impacting their performance.

An alternate approach is to run the microservices on VMs. However, VMs are
heavyweight in nature. Therefore, running many smaller VMs on a physical
machine is not resource efficient. This generally results in resource wastage.
In the case of sharing a VM to deploy multiple services, we would end up
facing the same issues of sharing the bare metal, as explained earlier.

In the case of Java-based microservices, sharing a VM or bare metal to deploy
multiple microservices also results in sharing JRE among microservices. This is
because the fat JARs created in our BrownField PSS abstract only application code
and its dependencies but not JREs. Any update on JRE installed on the machine
will have an impact on all the microservices deployed on this machine. Similarly,
if there are OS-level parameters, libraries, or tunings that are required for specific
microservices, then it will be hard to manage them on a shared environment.

One microservice principle insists that it should be self-contained and autonomous
by fully encapsulating its end-to-end runtime environment. In order to align with
this principle, all components, such as the OS, JRE, and microservice binaries,
have to be self-contained and isolated. The only option to achieve this is to follow
the approach of deploying one microservice per VM. However, this will result in
underutilized virtual machines, and in many cases, extra cost due to this can nullify
benefits of microservices.

Containerizing Microservices with Docker

[316]

What are containers?
Containers are not revolutionary, ground-breaking concepts. They have been in
action for quite a while. However, the world is witnessing the re-entry of containers,
mainly due to the wide adoption of cloud computing. The shortcomings of traditional
virtual machines in the cloud computing space also accelerated the use of containers.
Container providers such as Docker simplified container technologies to a great extent,
which also enabled a large adoption of container technologies in today's world. The
recent popularity of DevOps and microservices also acted as a catalyst for the rebirth
of container technologies.

So, what are containers? Containers provide private spaces on top of the operating
system. This technique is also called operating system virtualization. In this
approach, the kernel of the operating system provides isolated virtual spaces. Each
of these virtual spaces is called a container or virtual engine (VE). Containers allow
processes to run on an isolated environment on top of the host operating system. A
representation of multiple containers running on the same host is shown as follows:

Containers are easy mechanisms to build, ship, and run compartmentalized
software components. Generally, containers package all the binaries and libraries
that are essential for running an application. Containers reserve their own
filesystem, IP address, network interfaces, internal processes, namespaces, OS
libraries, application binaries, dependencies, and other application configurations.

There are billions of containers used by organizations. Moreover, there are many
large organizations heavily investing in container technologies. Docker is far ahead
of the competition, supported by many large operating system vendors and cloud
providers. Lmctfy, SystemdNspawn, Rocket, Drawbridge, LXD, Kurma, and Calico
are some of the other containerization solutions. Open container specification is also
under development.

Chapter 8

[317]

The difference between VMs and
containers
VMs such as Hyper-V, VMWare, and Zen were popular choices for data center
virtualization a few years ago. Enterprises experienced a cost saving by implementing
virtualization over the traditional bare metal usage. It has also helped many enterprises
utilize their existing infrastructure in a much more optimized manner. As VMs support
automation, many enterprises experienced that they had to make lesser management
effort with virtual machines. Virtual machines also helped organizations get isolated
environments for applications to run in.

Prima facie, both virtualization and containerization exhibit exactly the same
characteristics. However, in a nutshell, containers and virtual machines are not the
same. Therefore, it is unfair to make an apple-to-apple comparison between VMs
and containers. Virtual machines and containers are two different techniques and
address different problems of virtualization. This difference is evident from the
following diagram:

Virtual machines operate at a much lower level compared to containers. VMs provide
hardware virtualization, such as that of CPUs, motherboards, memory, and so on.
A VM is an isolated unit with an embedded operating system, generally called a
Guest OS. VMs replicate the whole operating system and run it within the VM with
no dependency on the host operating system environment. As VMs embed the full
operating system environment, these are heavyweight in nature. This is an advantage
as well as a disadvantage. The advantage is that VMs offer complete isolation to the
processes running on VMs. The disadvantage is that it limits the number of VMs one
can spin up in a bare metal due to the resource requirements of VMs.

Containerizing Microservices with Docker

[318]

The size of a VM has a direct impact on the time to start and stop it. As starting a VM
in turn boots the OS, the start time for VMs is generally high. VMs are more friendly
with infrastructure teams as it requires a low level of infrastructure competency to
manage VMs.

In the container world, containers do not emulate the entire hardware or operating
system. Unlike VMs, containers share certain parts of the host kernel and operating
system. There is no concept of guest OS in the case of containers. Containers provide
an isolated execution environment directly on top of the host operating system. This
is its advantage as well as disadvantage. The advantage is that it is lighter as well
as faster. As containers on the same machine share the host operating system, the
overall resource utilization of containers is fairly small. As a result, many smaller
containers can be run on the same machine, as compared to heavyweight VMs. As
containers on the same host share the host operating system, there are limitations as
well. For example, it is not possible to set iptables firewall rules inside a container.
Processes inside the container are completely independent from the processes on
different containers running on the same host.

Unlike VMs, container images are publically available on community portals. This
makes developers' lives much easier as they don't have to build the images from
scratch; instead, they can now take a base image from certified sources and add
additional layers of software components on top of the downloaded base image.

The lightweight nature of the containers is also opening up a plethora of opportunities,
such as automated build, publishing, downloading, copying, and so on. The ability to
download, build, ship, and run containers with a few commands or to use REST APIs
makes containers more developer friendly. Building a new container does not take
more than a few seconds. Containers are now part and parcel of continuous delivery
pipelines as well.

In summary, containers have many advantages over VMs, but VMs have their own
exclusive strengths. Many organizations use both containers and VMs, such as by
running containers on top of VMs.

Chapter 8

[319]

The benefits of containers
We have already considered the many benefits of containers over VMs. This section
will explain the overall benefits of containers beyond the benefits of VMs:

•	 Self-contained: Containers package the essential application binaries and their
dependencies together to make sure that there is no disparity between different
environments such as development, testing, or production. This promotes
the concept of Twelve-Factor applications and that of immutable containers.
Spring Boot microservices bundle all the required application dependencies.
Containers stretch this boundary further by embedding JRE and other
operating system-level libraries, configurations, and so on, if there are any.

•	 Lightweight: Containers, in general, are smaller in size with a lighter
footprint. The smallest container, Alpine, has a size of less than 5 MB. The
simplest Spring Boot microservice packaged with an Alpine container with
Java 8 would only come to around 170 MB in size. Though the size is still on
the higher side, it is much less than the VM image size, which is generally in
GBs. The smaller footprint of containers not only helps spin new containers
quickly but also makes building, shipping, and storing easier.

•	 Scalable: As container images are smaller in size and there is no OS booting
at startup, containers are generally faster to spin up and shut down. This
makes containers the popular choice for cloud-friendly elastic applications.

•	 Portable: Containers provide portability across machines and cloud
providers. Once the containers are built with all the dependencies, they
can be ported across multiple machines or across multiple cloud providers
without relying on the underlying machines. Containers are portable from
desktops to different cloud environments.

•	 Lower license cost: Many software license terms are based on the physical
core. As containers share the operating system and are not virtualized at the
physical resources level, there is an advantage in terms of the license cost.

•	 DevOps: The lightweight footprint of containers makes it easy to automate
builds and publish and download containers from remote repositories. This
makes it easy to use in Agile and DevOps environments by integrating with
automated delivery pipelines. Containers also support the concept of build
once by creating immutable containers at build time and moving them across
multiple environments. As containers are not deep into the infrastructure,
multidisciplinary DevOps teams can manage containers as part of their
day-to-day life.

•	 Version controlled: Containers support versions by default. This helps build
versioned artifacts, just as with versioned archive files.

Containerizing Microservices with Docker

[320]

•	 Reusable: Container images are reusable artifacts. If an image is built
by assembling a number of libraries for a purpose, it can be reused in
similar situations.

•	 Immutable containers: In this concept, containers are created and disposed
of after usage. They are never updated or patched. Immutable containers are
used in many environments to avoid complexities in patching deployment
units. Patching results in a lack of traceability and an inability to recreate
environments consistently.

Microservices and containers
There is no direct relationship between microservices and containers. Microservices
can run without containers, and containers can run monolithic applications. However,
there is a sweet spot between microservices and containers.

Containers are good for monolithic applications, but the complexities and the size of
the monolith application may kill some of the benefits of the containers. For example,
spinning new containers quickly may not be easy with monolithic applications.
In addition to this, monolithic applications generally have local environment
dependencies, such as the local disk, stovepipe dependencies with other systems,
and so on. Such applications are difficult to manage with container technologies.
This is where microservices go hand in hand with containers.

The following diagram shows three polyglot microservices running on the same
host machine and sharing the same operating system but abstracting the runtime
environment:

Chapter 8

[321]

The real advantage of containers can be seen when managing many polyglot
microservices—for instance, one microservice in Java and another one in Erlang or
some other language. Containers help developers package microservices written in any
language or technology in a platform- and technology-agnostic fashion and uniformly
distribute them across multiple environments. Containers eliminate the need to have
different deployment management tools to handle polyglot microservices. Containers
not only abstract the execution environment but also how to access the services.
Irrespective of the technologies used, containerized microservices expose REST APIs.
Once the container is up and running, it binds to certain ports and exposes its APIs.
As containers are self-contained and provide full stack isolation among services, in
a single VM or bare metal, one can run multiple heterogeneous microservices and
handle them in a uniform way.

Introduction to Docker
The previous sections talked about containers and their benefits. Containers have
been in the business for years, but the popularity of Docker has given containers
a new outlook. As a result, many container definitions and perspectives emerged
from the Docker architecture. Docker is so popular that even containerization is
referred to as dockerization.

Docker is a platform to build, ship, and run lightweight containers based on Linux
kernels. Docker has default support for Linux platforms. It also has support for
Mac and Windows using Boot2Docker, which runs on top of Virtual Box.

Amazon EC2 Container Service (ECS) has out-of-the-box support for Docker on
AWS EC2 instances. Docker can be installed on bare metals and also on traditional
virtual machines such as VMWare or Hyper-V.

Containerizing Microservices with Docker

[322]

The key components of Docker
A Docker installation has two key components: a Docker daemon and a Docker
client. Both the Docker daemon and Docker client are distributed as a single binary.

The following diagram shows the key components of a Docker installation:

The Docker daemon
The Docker daemon is a server-side component that runs on the host machine
responsible for building, running, and distributing Docker containers. The Docker
daemon exposes APIs for the Docker client to interact with the daemon. These APIs
are primarily REST-based endpoints. One can imagine that the Docker daemon as a
controller service running on the host machine. Developers can programmatically
use these APIs to build custom clients as well.

The Docker client
The Docker client is a remote command-line program that interacts with the Docker
daemon through either a socket or REST APIs. The CLI can run on the same host as
the daemon is running on or it can run on a completely different host and connect
to the daemon remotely. Docker users use the CLI to build, ship, and run Docker
containers.

Chapter 8

[323]

Docker concepts
The Docker architecture is built around a few concepts: images, containers, the
registry, and the Dockerfile.

Docker images
One of the key concepts of Docker is the image. A Docker image is the read-only
copy of the operating system libraries, the application, and its libraries. Once an
image is created, it is guaranteed to run on any Docker platform without alterations.

In Spring Boot microservices, a Docker image packages operating systems such as
Ubuntu, Alpine, JRE, and the Spring Boot fat application JAR file. It also includes
instructions to run the application and expose the services:

As shown in the diagram, Docker images are based on a layered architecture in
which the base image is one of the flavors of Linux. Each layer, as shown in the
preceding diagram, gets added to the base image layer with the previous image
as the parent layer. Docker uses the concept of a union filesystem to combine all
these layers into a single image, forming a single filesystem.

In typical cases, developers do not build Docker images from scratch. Images
of an operating system, or other common libraries, such as Java 8 images,
are publicly available from trusted sources. Developers can start building on top
of these base images. The base image in Spring microservices can be JRE 8 rather
than starting from a Linux distribution image such as Ubuntu.

Containerizing Microservices with Docker

[324]

Every time we rebuild the application, only the changed layer gets rebuilt, and the
remaining layers are kept intact. All the intermediate layers are cached, and hence,
if there is no change, Docker uses the previously cached layer and builds it on
top. Multiple containers running on the same machine with the same type of base
images would reuse the base image, thus reducing the size of the deployment. For
instance, in a host, if there are multiple containers running with Ubuntu as the base
image, they all reuse the same base image. This is applicable when publishing or
downloading images as well:

As shown in the diagram, the first layer in the image is a boot filesystem called
bootfs, which is similar to the Linux kernel and the boot loader. The boot filesystem
acts as a virtual filesystem for all images.

On top of the boot filesystem, the operating system filesystem is placed, which
is called rootfs. The root filesystem adds the typical operating system directory
structure to the container. Unlike in the Linux systems, rootfs, in the case of
Docker, is on a read-only mode.

On top of rootfs, other required images are placed as per the requirements. In
our case, these are JRE and the Spring Boot microservice JARs. When a container
is initiated, a writable filesystem is placed on top of all the other filesystems for the
processes to run. Any changes made by the process to the underlying filesystem
are not reflected in the actual container. Instead, these are written to the writable
filesystem. This writable filesystem is volatile. Hence, the data is lost once the
container is stopped. Due to this reason, Docker containers are ephemeral in nature.

Chapter 8

[325]

The base operating system packaged inside Docker is generally a minimal copy of
just the OS filesystem. In reality the process running on top may not use the entire
OS services. In a Spring Boot microservice, in many cases, the container just initiates
a CMD and JVM and then invokes the Spring Boot fat JAR.

Docker containers
Docker containers are the running instances of a Docker image. Containers use the
kernel of the host operating system when running. Hence, they share the host kernel
with other containers running on the same host. The Docker runtime ensures that
the container processes are allocated with their own isolated process space using
kernel features such as cgroups and the kernel namespace of the operating system.
In addition to the resource fencing, containers get their own filesystem and network
configurations as well.

The containers, when instantiated, can have specific resource allocations, such as
the memory and CPU. Containers, when initiated from the same image, can have
different resource allocations. The Docker container, by default, gets an isolated
subnet and gateway to the network. The network has three modes.

The Docker registry
The Docker registry is a central place where Docker images are published and
downloaded from. The URL https://hub.docker.com is the central registry
provided by Docker. The Docker registry has public images that one can download
and use as the base registry. Docker also has private images that are specific to the
accounts created in the Docker registry. The Docker registry screenshot is shown
as follows:

https://hub.docker.com

Containerizing Microservices with Docker

[326]

Docker also offers Docker Trusted Registry, which can be used to set up registries
locally on premises.

Dockerfile
A Dockerfile is a build or scripting file that contains instructions to build a Docker
image. There can be multiple steps documented in the Dockerfile, starting from
getting a base image. A Dockerfile is a text file that is generally named Dockerfile.
The docker build command looks up Dockerfile for instructions to build.
One can compare a Dockerfile to a pom.xml file used in a Maven build.

Deploying microservices in Docker
This section will operationalize our learning by showcasing how to build containers
for our BrownField PSS microservices.

The full source code of this chapter is available under the Chapter
8 project in the code files. Copy chapter7.configserver,
chapter7.eurekaserver, chapter7.search, chapter7.
search-apigateway, and chapter7.website into a new STS
workspace and rename them chapter8.*.

Perform the following steps to build Docker containers for BrownField
PSS microservices:

1.	 Install Docker from the official Docker site at https://www.docker.com.
Follow the Get Started link for the download and installation instructions
based on the operating system of choice. Once installed, use the following
command to verify the installation:
$docker –version

Docker version 1.10.1, build 9e83765

2.	 In this section, we will take a look at how to dockerize the Search
(chapter8.search) microservice, the Search API Gateway (chapter8.
search-apigateway) microservice, and the Website (chapter8.website)
Spring Boot application.

3.	 Before we make any changes, we need to edit bootstrap.properties to
change the config server URL from localhost to the IP address as localhost is
not resolvable from within the Docker containers. In the real world, this will
point to a DNS or load balancer, as follows:
spring.cloud.config.uri=http://192.168.0.105:8888

https://www.docker.com

Chapter 8

[327]

Replace the IP address with the IP address of your machine.

4.	 Similarly, edit search-service.properties on the Git repository and
change localhost to the IP address. This is applicable for the Eureka URL
as well as the RabbitMQ URL. Commit back to Git after updating. You can
do this via the following code:
spring.application.name=search-service
spring.rabbitmq.host=192.168.0.105
spring.rabbitmq.port=5672
spring.rabbitmq.username=guest
spring.rabbitmq.password=guest
orginairports.shutdown:JFK
eureka.client.serviceUrl.defaultZone: http://192.168.0.105:8761/
eureka/
spring.cloud.stream.bindings.inventoryQ=inventoryQ

5.	 Change the RabbitMQ configuration file rabbitmq.config by uncommenting
the following line to provide access to guest. By default, guest is restricted to be
accessed from localhost only:
 {loopback_users, []}

The location of rabbitmq.config will be different for different
operating systems.

6.	 Create a Dockerfile under the root directory of the Search microservice,
as follows:
FROM frolvlad/alpine-oraclejdk8
VOLUME /tmp
ADD target/search-1.0.jar search.jar
EXPOSE 8090
ENTRYPOINT ["java","-jar","/search.jar"]

The following is a quick examination of the contents of the Dockerfile:
°° FROM frolvlad/alpine-oraclejdk8: This tells the Docker build to

use a specific alpine-oraclejdk8 version as the basic image for this
build. The frolvlad indicates the repository to locate the alpine-
oraclejdk8 image. In this case, it is an image built with Alpine Linux
and Oracle JDK 8. This will help layer our application on top of the base
image without setting up Java libraries ourselves. In this case, as this
image is not available on our local image store, the Docker build will go
ahead and download this image from the remote Docker Hub registry.

Containerizing Microservices with Docker

[328]

°° VOLUME /tmp: This enables access from the container to the
directory specified in the host machine. In our case, this points
to the tmp directory in which the Spring Boot application creates
working directories for Tomcat. The tmp directory is a logical
one for the container, which indirectly points to one of the local
directories of the host.

°° ADD target/search-1.0.jar search.jar: This adds the
application binary file to the container with the destination filename
specified. In this case, the Docker build copies target/search-
1.0.jar to the container as search.jar.

°° EXPOSE 8090: This is to tell the container how to do port mapping.
This associates 8090 with external port binding for the internal
Spring Boot service.

°° ENTRYPOINT ["java","-jar", "/search.jar"]: This tells the
container which default application to run when a container is
started. In this case, we are pointing to the Java process and the
Spring Boot fat JAR file to initiate the service.

7.	 The next step is to run docker build from the folder in which the Dockerfile
is stored. This will download the base image and run the entries in the
Dockerfile one after the other, as follows:
docker build –t search:1.0 .

The output of this command will be as follows:

Chapter 8

[329]

8.	 Repeat the same steps for Search API Gateway and Website.
9.	 Once the images are created, they can be verified by typing the following

command. This command will list out the images and their details,
including the size of image files:
docker images

The output will be as follows:

10.	 The next thing to do is run the Docker container. This can be done with the
docker run command. This command will load and run the container.
On starting, the container calls the Spring Boot executable JAR to start the
microservice.
Before starting the containers, ensure that the Config and the Eureka servers
are running:
docker run --net host -p 8090:8090 -t search:1.0

docker run --net host -p 8095:8095 -t search-apigateway:1.0

docker run --net host -p 8001:8001 -t website:1.0

The preceding command starts the Search and Search API Gateway
microservices and Website.
In this example, we are using the host network (--net host) instead of
the bridge network to avoid Eureka registering with the Docker container
name. This can be corrected by overriding EurekaInstanceConfigBean.
The host option is less isolated compared to the bridge option from the
network perspective. The advantage and disadvantage of host versus
bridge depends on the project.

11.	 Once all the services are fully started, verify with the docker ps command,
as shown in the following screenshot:

Containerizing Microservices with Docker

[330]

12.	 The next step is to point the browser to http://192.168.99.100:8001.
This will open the BrownField PSS website.

Note the IP address. This is the IP address of the Docker machine if you are
running with Boot2Docker on Mac or Windows. In Mac or Windows, if the
IP address is not known, then type the following command to find out the
Docker machine's IP address for the default machine:
docker-machine ip default

If Docker is running on Linux, then this is the host IP address.

Apply the same changes to Booking, Fares, Check-in, and their respective
gateway microservices.

Running RabbitMQ on Docker
As our example also uses RabbitMQ, let's explore how to set up RabbitMQ as
a Docker container. The following command pulls the RabbitMQ image from
Docker Hub and starts RabbitMQ:

docker run –net host rabbitmq3

Ensure that the URL in *-service.properties is changed to the Docker host's
IP address. Apply the earlier rule to find out the IP address in the case of Mac
or Windows.

Using the Docker registry
The Docker Hub provides a central location to store all the Docker images. The
images can be stored as public as well as private. In many cases, organizations
deploy their own private registries on premises due to security-related concerns.

Perform the following steps to set up and run a local registry:

1.	 The following command will start a registry, which will bind the registry
on port 5000:
docker run -d -p 5000:5000 --restart=always --name registry
registry:2

2.	 Tag search:1.0 to the registry, as follows:
docker tag search:1.0 localhost:5000/search:1.0

Chapter 8

[331]

3.	 Then, push the image to the registry via the following command:
docker push localhost:5000/search:1.0

4.	 Pull the image back from the registry, as follows:
docker pull localhost:5000/search:1.0

Setting up the Docker Hub
In the previous chapter, we played with a local Docker registry. This section will
show how to set up and use the Docker Hub to publish the Docker containers. This
is a convenient mechanism to globally access Docker images. Later in this chapter,
Docker images will be published to the Docker Hub from the local machine and
downloaded from the EC2 instances.

In order to do this, create a public Docker Hub account and a repository.
For Mac, follow the steps as per the following URL: https://docs.docker.com/
mac/step_five/.

In this example, the Docker Hub account is created using the brownfield username.

The registry, in this case, acts as the microservices repository in which all the
dockerized microservices will be stored and accessed. This is one of the capabilities
explained in the microservices capability model.

Publishing microservices to the Docker Hub
In order to push dockerized services to the Docker Hub, follow these steps. The first
command tags the Docker image, and the second one pushes the Docker image to
the Docker Hub repository:

docker tag search:1.0brownfield/search:1.0

docker push brownfield/search:1.0

To verify whether the container images are published, go to the Docker Hub repository
at https://hub.docker.com/u/brownfield.

Repeat this step for all the other BrownField microservices as well. At the end of this
step, all the services will be published to the Docker Hub.

https://docs.docker.com/mac/step_five/
https://docs.docker.com/mac/step_five/

Containerizing Microservices with Docker

[332]

Microservices on the cloud
One of the capabilities mentioned in the microservices capability model is the use of
the cloud infrastructure for microservices. Earlier in this chapter, we also explored
the necessity of using the cloud for microservices deployments. So far, we have not
deployed anything to the cloud. As we have eight microservices in total—Config-
server, Eureka-server, Turbine, RabbitMQ, Elasticsearch, Kibana, and Logstash—
in our overall BrownField PSS microservices ecosystem, it is hard to run all of them
on the local machine.

In the rest of this book, we will operate using AWS as the cloud platform to deploy
BrownField PSS microservices.

Installing Docker on AWS EC2
In this section, we will install Docker on the EC2 instance.

This example assumes that readers are familiar with AWS and an account is already
created on AWS.

Perform the following steps to set up Docker on EC2:

1.	 Launch a new EC2 instance. In this case, if we have to run all the instances
together, we may need a large instance. The example uses t2.large.
In this example, the following Ubuntu AMI image is used: ubuntu-trusty-
14.04-amd64-server-20160114.5 (ami-fce3c696).

2.	 Connect to the EC2 instance and run the following commands:
sudo apt-get update

sudo apt-get install docker.io

3.	 The preceding command will install Docker on an EC2 instance. Verify the
installation with the following command:
docker version

Running BrownField services on EC2
In this section, we will set up BrownField microservices on the EC2 instances created.
In this case, the build is set up in the local desktop machine, and the binaries will be
deployed to AWS.

Chapter 8

[333]

Perform the following steps to set up services on an EC2 instance:

1.	 Install Git via the following command:
sudo apt-get install git

2.	 Create a Git repository on any folder of your choice.
3.	 Change the Config server's bootstrap.properties to point to the

appropriate Git repository created for this example.
4.	 Change the bootstrap.properties of all the microservices to point to the

config-server using the private IP address of the EC2 instance.
5.	 Copy all *.properties from the local Git repository to the EC2 Git

repository and perform a commit.
6.	 Change the Eureka server URLs and RabbitMQ URLs in the *.properties

file to match the EC2 private IP address. Commit the changes to Git once
they have been completed.

7.	 On the local machine, recompile all the projects and create Docker images
for the search, search-apigateway, and website microservices. Push all
of them to the Docker Hub registry.

8.	 Copy the config-server and the Eureka-server binaries from the local machine
to the EC2 instance.

9.	 Set up Java 8 on the EC2 instance.
10.	 Then, execute the following commands in sequence:

java –jar config-server.jar

java –jar eureka-server.jar

docker run –net host rabbitmq:3

docker run --net host -p 8090:8090 rajeshrv/search:1.0

docker run --net host -p 8095:8095 rajeshrv/search-apigateway:1.0

docker run --net host -p 8001:8001 rajeshrv/website:1.0

11.	 Check whether all the services are working by opening the URL of the website
and executing a search. Note that we will use the public IP address in this case:
http://54.165.128.23:8001.

Containerizing Microservices with Docker

[334]

Updating the life cycle manager
In Chapter 6, Autoscaling Microservices, we considered a life cycle manager to
automatically start and stop instances. We used SSH and executed a Unix script to
start the Spring Boot microservices on the target machine. With Docker, we no longer
need SSH connections as the Docker daemon provides REST-based APIs to start and
stop instances. This greatly simplifies the complexities of the deployment engine
component of the life cycle manager.

In this section, we will not rewrite the life cycle manager. By and large, we will
replace the life cycle manager in the next chapter.

The future of containerization –
unikernels and hardened security
Containerization is still evolving, but the number of organizations adopting
containerization techniques has gone up in recent times. While many organizations
are aggressively adopting Docker and other container technologies, the downside
of these techniques is still in the size of the containers and security concerns.

Currently, Docker images are generally heavy. In an elastic automated environment,
where containers are created and destroyed quite frequently, size is still an issue.
A larger size indicates more code, and more code means that it is more prone to
security vulnerabilities.

The future is definitely in small footprint containers. Docker is working on
unikernels, lightweight kernels that can run Docker even on low-powered IoT
devices. Unikernels are not full-fledged operating systems, but they provide the
basic necessary libraries to support the deployed applications.

The security issues of containers are much discussed and debated. The key security
issues are around the user namespace segregation or user ID isolation. If the container
is on root, then it can by default gain the root privilege of the host. Using container
images from untrusted sources is another security concern. Docker is bridging these
gaps as quickly as possible, but there are many organizations that use a combination
of VMs and Docker to circumvent some of the security concerns.

Chapter 8

[335]

Summary
In this chapter, you learned about the need to have a cloud environment when
dealing with Internet-scale microservices.

We explored the concept of containers and compared them with traditional virtual
machines. You also learned the basics of Docker, and we explained the concepts of
Docker images, containers, and registries. The importance and benefits of containers
were explained in the context of microservices.

This chapter then switched to a hands-on example by dockerizing the BrownField
microservice. We demonstrated how to deploy the Spring Boot microservice
developed earlier on Docker. You learned the concept of registries by exploring a
local registry as well as the Docker Hub to push and pull dockerized microservices.

As the last step, we explored how to deploy a dockerized BrownField microservice in
the AWS cloud environment.

[337]

Managing Dockerized
Microservices with Mesos

and Marathon
In an Internet-scale microservices deployment, it is not easy to manage thousands
of dockerized microservices. It is essential to have an infrastructure abstraction
layer and a strong cluster control platform to successfully manage Internet-scale
microservice deployments.

This chapter will explain the need and use of Mesos and Marathon as an infrastructure
abstraction layer and a cluster control system, respectively, to achieve optimized
resource usage in a cloud-like environment when deploying microservices at scale.
This chapter will also provide a step-by-step approach to setting up Mesos and
Marathon in a cloud environment. Finally, this chapter will demonstrate how to
manage dockerized microservices in the Mesos and Marathon environment.

By the end of this chapter, you will have learned about:

•	 The need to have an abstraction layer and cluster control software
•	 Mesos and Marathon from the context of microservices
•	 Managing dockerized BrownField Airline's PSS microservices with Mesos

and Marathon

Managing Dockerized Microservices with Mesos and Marathon

[338]

Reviewing the microservice capability
model
In this chapter, we will explore the Cluster Control & Provisioning microservices
capability from the microservices capability model discussed in Chapter 3, Applying
Microservices Concepts:

The missing pieces
In Chapter 8, Containerizing Microservices with Docker, we discussed how to
dockerize BrownField Airline's PSS microservices. Docker helped package the
JVM runtime and OS parameters along with the application so that there is no
special consideration required when moving dockerized microservices from one
environment to another. The REST APIs provided by Docker have simplified the life
cycle manager's interaction with the target machine in starting and stopping artifacts.

Chapter 9

[339]

In a large-scale deployment, with hundreds and thousands of Docker containers, we
need to ensure that Docker containers run with their own resource constraints, such
as memory, CPU, and so on. In addition to this, there may be rules set for Docker
deployments, such as replicated copies of the container should not be run on the
same machine. Also, a mechanism needs to be in place to optimally use the server
infrastructure to avoid incurring extra cost.

There are organizations that deal with billions of containers. Managing them manually
is next to impossible. In the context of large-scale Docker deployments, some of the key
questions to be answered are:

•	 How do we manage thousands of containers?
•	 How do we monitor them?
•	 How do we apply rules and constraints when deploying artifacts?
•	 How do we ensure that we utilize containers properly to gain

resource efficiency?
•	 How do we ensure that at least a certain number of minimal instances

are running at any point in time?
•	 How do we ensure dependent services are up and running?
•	 How do we do rolling upgrades and graceful migrations?
•	 How do we roll back faulty deployments?

All these questions point to the need to have a solution to address two key
capabilities, which are as follows:

•	 A cluster abstraction layer that provides a uniform abstraction over many
physical or virtual machines

•	 A cluster control and init system to manage deployments intelligently on
top of the cluster abstraction

The life cycle manager is ideally placed to deal with these situations. One can add
enough intelligence to the life cycle manager to solve these issues. However, before
attempting to modify the life cycle manager, it is important to understand the role
of cluster management solutions a bit more.

Managing Dockerized Microservices with Mesos and Marathon

[340]

Why cluster management is important
As microservices break applications into different micro-applications, many
developers request more server nodes for deployment. In order to manage
microservices properly, developers tend to deploy one microservice per VM,
which further drives down the resource utilization. In many cases, this results
in an overallocation of CPUs and memory.

In many deployments, the high-availability requirements of microservices force
engineers to add more and more service instances for redundancy. In reality,
though it provides the required high availability, this will result in underutilized
server instances.

In general, microservice deployment requires more infrastructure compared to
monolithic application deployments. Due to the increase in cost of the infrastructure,
many organizations fail to see the value of microservices:

In order to address the issue stated before, we need a tool that is capable of
the following:

•	 Automating a number of activities, such as the allocation of containers
to the infrastructure efficiently and keeping it transparent to developers
and administrators

•	 Providing a layer of abstraction for the developers so that they can deploy
their application against a data center without knowing which machine is
to be used to host their applications

•	 Setting rules or constraints against deployment artifacts
•	 Offering higher levels of agility with minimal management overheads for

developers and administrators, perhaps with minimal human interaction
•	 Building, deploying, and managing the application's cost effectively by

driving a maximum utilization of the available resources

Containers solve an important issue in this context. Any tool that we select with
these capabilities can handle containers in a uniform way, irrespective of the
underlying microservice technologies.

Chapter 9

[341]

What does cluster management do?
Typical cluster management tools help virtualize a set of machines and manage
them as a single cluster. Cluster management tools also help move the workload or
containers across machines while being transparent to the consumer. Technology
evangelists and practitioners use different terminologies, such as cluster orchestration,
cluster management, data center virtualization, container schedulers, or container life
cycle management, container orchestration, data center operating system, and so on.

Many of these tools currently support both Docker-based containers as well as
noncontainerized binary artifact deployments, such as a standalone Spring Boot
application. The fundamental function of these cluster management tools is to abstract
the actual server instance from the application developers and administrators.

Cluster management tools help the self-service and provisioning of infrastructure
rather than requesting the infrastructure teams to allocate the required machines
with a predefined specification. In this automated cluster management approach,
machines are no longer provisioned upfront and preallocated to the applications.
Some of the cluster management tools also help virtualize data centers across
many heterogeneous machines or even across data centers, and create an elastic,
private cloud-like infrastructure. There is no standard reference model for cluster
management tools. Therefore, the capabilities vary between vendors.

Some of the key capabilities of cluster management software are summarized
as follows:

•	 Cluster management: It manages a cluster of VMs and physical machines
as a single large machine. These machines could be heterogeneous in terms
of resource capabilities, but they are, by and large, machines with Linux as
the operating system. These virtual clusters can be formed on the cloud,
on-premises, or a combination of both.

•	 Deployments: It handles the automatic deployment of applications and
containers with a large set of machines. It supports multiple versions of the
application containers and also rolling upgrades across a large number of
cluster machines. These tools are also capable of handling the rollback of
faulty promotes.

•	 Scalability: It handles the automatic and manual scalability of application
instances as and when required, with optimized utilization as the primary
goal.

•	 Health: It manages the health of the cluster, nodes, and applications.
It removes faulty machines and application instances from the cluster.

Managing Dockerized Microservices with Mesos and Marathon

[342]

•	 Infrastructure abstraction: It abstracts the developers from the actual
machine on which the applications are deployed. The developers need not
worry about the machine, its capacity, and so on. It is entirely the cluster
management software's decision to decide how to schedule and run the
applications. These tools also abstract machine details, their capacity,
utilization, and location from the developers. For application owners, these
are equivalent to a single large machine with almost unlimited capacity.

•	 Resource optimization: The inherent behavior of these tools is to allocate
container workloads across a set of available machines in an efficient way,
thereby reducing the cost of ownership. Simple to extremely complicated
algorithms can be used effectively to improve utilization.

•	 Resource allocation: It allocates servers based on resource availability and
the constraints set by application developers. Resource allocation is based on
these constraints, affinity rules, port requirements, application dependencies,
health, and so on.

•	 Service availability: It ensures that the services are up and running
somewhere in the cluster. In case of a machine failure, cluster control tools
automatically handle failures by restarting these services on some other
machine in the cluster.

•	 Agility: These tools are capable of quickly allocating workloads to the
available resources or moving the workload across machines if there is
change in resource requirements. Also, constraints can be set to realign
the resources based on business criticality, business priority, and so on.

•	 Isolation: Some of these tools provide resource isolation out of the box.
Hence, even if the application is not containerized, resource isolation can
be still achieved.

A variety of algorithms are used for resource allocation, ranging from simple
algorithms to complex algorithms, with machine learning and artificial intelligence.
The common algorithms used are random, bin packing, and spread. Constraints
set against applications will override the default algorithms based on resource
availability:

Chapter 9

[343]

The preceding diagram shows how these algorithms fill the available machines with
deployments. In this case, it is demonstrated with two machines:

•	 Spread: This algorithm performs the allocation of workload equally across
the available machines. This is showed in diagram A.

•	 Bin packing: This algorithm tries to fill in data machine by machine and
ensures the maximum utilization of machines. Bin packing is especially
good when using cloud services in a pay-as-you-use style. This is shown
in diagram B.

•	 Random: This algorithm randomly chooses machines and deploys containers
on randomly selected machines. This is showed in diagram C.

There is a possibility of using cognitive computing algorithms such as machine
learning and collaborative filtering to improve efficiency. Techniques such as
oversubscription allow a better utilization of resources by allocating underutilized
resources for high-priority tasks—for example, revenue-generating services for
best-effort tasks such as analytics, video, image processing, and so on.

Managing Dockerized Microservices with Mesos and Marathon

[344]

Relationship with microservices
The infrastructure of microservices, if not properly provisioned, can easily result in
oversized infrastructures and, essentially, a higher cost of ownership. As discussed
in the previous sections, a cloud-like environment with a cluster management tool is
essential to realize cost benefits when dealing with large-scale microservices.

The Spring Boot microservices turbocharged with the Spring Cloud project is the
ideal candidate workload to leverage cluster management tools. As Spring Cloud-
based microservices are location unaware, these services can be deployed anywhere
in the cluster. Whenever services come up, they automatically register to the service
registry and advertise their availability. On the other hand, consumers always look
for the registry to discover the available service instances. This way, the application
supports a full fluid structure without preassuming a deployment topology. With
Docker, we were able to abstract the runtime so that the services could run on any
Linux-based environments.

Relationship with virtualization
Cluster management solutions are different from server virtualization solutions
in many aspects. Cluster management solutions run on top of VMs or physical
machines as an application component.

Cluster management solutions
There are many cluster management software tools available. It is unfair to do an
apple-to-apple comparison between them. Even though there are no one-to-one
components, there are many areas of overlap in capabilities between them. In many
situations, organizations use a combination of one or more of these tools to fulfill
their requirements.

Chapter 9

[345]

The following diagram shows the position of cluster management tools from the
microservices context:

In this section, we will explore some of the popular cluster management solutions
available on the market.

Docker Swarm
Docker Swarm is Docker's native cluster management solution. Swarm provides a
native and deeper integration with Docker and exposes APIs that are compatible
with Docker's remote APIs. Docker Swarm logically groups a pool of Docker hosts
and manages them as a single large Docker virtual host. Instead of application
administrators and developers deciding on which host the container is to be deployed
in, this decision making will be delegated to Docker Swarm. Docker Swarm will decide
which host to be used based on the bin packing and spread algorithms.

As Docker Swarm is based on Docker's remote APIs, its learning curve for those
already using Docker is narrower compared to any other container orchestration
tools. However, Docker Swarm is a relatively new product on the market, and it
only supports Docker containers.

Docker Swarm works with the concepts of manager and nodes. A manager is the
single point for administrations to interact and schedule the Docker containers for
execution. Nodes are where Docker containers are deployed and run.

Managing Dockerized Microservices with Mesos and Marathon

[346]

Kubernetes
Kubernetes (k8s) comes from Google's engineering, is written in the Go language,
and is battle-tested for large-scale deployments at Google. Similar to Swarm,
Kubernetes helps manage containerized applications across a cluster of nodes.
Kubernetes helps automate container deployments, scheduling, and the scalability
of containers. Kubernetes supports a number of useful features out of the box, such
as automatic progressive rollouts, versioned deployments, and container resiliency
if containers fail due to some reason.

The Kubernetes architecture has the concepts of master, nodes, and pods. The master
and nodes together form a Kubernetes cluster. The master node is responsible for
allocating and managing workload across a number of nodes. Nodes are nothing but
a VM or a physical machine. Nodes are further subsegmented as pods. A node can
host multiple pods. One or more containers are grouped and executed inside a pod.
Pods are also helpful in managing and deploying co-located services for efficiency.
Kubernetes also supports the concept of labels as key-value pairs to query and find
containers. Labels are user-defined parameters to tag certain types of nodes that
execute a common type of workloads, such as frontend web servers. The services
deployed on a cluster get a single IP/DNS to access the service.

Kubernetes has out-of-the-box support for Docker; however, the Kubernetes learning
curve is steeper compared to Docker Swarm. RedHat offers commercial support for
Kubernetes as part of its OpenShift platform.

Apache Mesos
Mesos is an open source framework originally developed by the University of
California at Berkeley and is used by Twitter at scale. Twitter uses Mesos primarily
to manage the large Hadoop ecosystem.

Mesos is slightly different from the previous solutions. Mesos is more of a resource
manager that relays on other frameworks to manage workload execution. Mesos
sits between the operating system and the application, providing a logical cluster
of machines.

Mesos is a distributed system kernel that logically groups and virtualizes many
computers to a single large machine. Mesos is capable of grouping a number of
heterogeneous resources to a uniform resource cluster on which applications can
be deployed. For these reasons, Mesos is also known as a tool to build a private
cloud in a data center.

Chapter 9

[347]

Mesos has the concepts of the master and slave nodes. Similar to the earlier solutions,
master nodes are responsible for managing the cluster, whereas slaves run the
workload. Mesos internally uses ZooKeeper for cluster coordination and storage.
Mesos supports the concept of frameworks. These frameworks are responsible for
scheduling and running noncontainerized applications and containers. Marathon,
Chronos, and Aurora are popular frameworks for the scheduling and execution of
applications. Netflix Fenzo is another open source Mesos framework. Interestingly,
Kubernetes also can be used as a Mesos framework.

Marathon supports the Docker container as well as noncontainerized applications.
Spring Boot can be directly configured in Marathon. Marathon provides a number
of capabilities out of the box, such as supporting application dependencies, grouping
applications to scale and upgrade services, starting and shutting down healthy and
unhealthy instances, rolling out promotes, rolling back failed promotes, and so on.

Mesosphere offers commercial support for Mesos and Marathon as part of its
DCOS platform.

Nomad
Nomad from HashiCorp is another cluster management software. Nomad is a cluster
management system that abstracts lower-level machine details and their locations.
Nomad has a simpler architecture compared to the other solutions explored earlier.
Nomad is also lightweight. Similar to other cluster management solutions, Nomad
takes care of resource allocation and the execution of applications. Nomad also
accepts user-specific constraints and allocates resources based on this.

Nomad has the concept of servers, in which all jobs are managed. One server acts
as the leader, and others act as followers. Nomad has the concept of tasks, which
is the smallest unit of work. Tasks are grouped into task groups. A task group has
tasks that are to be executed in the same location. One or more task groups or tasks
are managed as jobs.

Nomad supports many workloads, including Docker, out of the box. Nomad also
supports deployments across data centers and is region and data center aware.

Fleet
Fleet is a cluster management system from CoreOS. It runs on a lower level and
works on top of systemd. Fleet can manage application dependencies and make sure
that all the required services are running somewhere in the cluster. If a service fails,
it restarts the service on another host. Affinity and constraint rules are possible to
supply when allocating resources.

Managing Dockerized Microservices with Mesos and Marathon

[348]

Fleet has the concepts of engine and agents. There is only one engine at any point
in the cluster with multiple agents. Tasks are submitted to the engine and agent run
these tasks on a cluster machine.

Fleet also supports Docker out of the box.

Cluster management with Mesos and
Marathon
As we discussed in the previous section, there are many cluster management
solutions or container orchestration tools available. Different organizations
choose different solutions to address problems based on their environment.
Many organizations choose Kubernetes or Mesos with a framework such as
Marathon. In most cases, Docker is used as a default containerization method
to package and deploy workloads.

For the rest of this chapter, we will show how Mesos works with Marathon to
provide the required cluster management capability. Mesos is used by many
organizations, including Twitter, Airbnb, Apple, eBay, Netflix, PayPal, Uber,
Yelp, and many others.

Diving deep into Mesos
Mesos can be treated as a data center kernel. DCOS is the commercial version
of Mesos supported by Mesosphere. In order to run multiple tasks on one node,
Mesos uses resource isolation concepts. Mesos relies on the Linux kernel's cgroups
to achieve resource isolation similar to the container approach. It also supports
containerized isolation using Docker. Mesos supports both batch workload as
well as the OLTP kind of workloads:

Chapter 9

[349]

Mesos is an open source top-level Apache project under the Apache license. Mesos
abstracts lower-level computing resources such as CPU, memory, and storage from
lower-level physical or virtual machines.

Before we examine why we need both Mesos and Marathon, let's understand the
Mesos architecture.

The Mesos architecture
The following diagram shows the simplest architectural representation of Mesos.
The key components of Mesos includes a Mesos master node, a set of slave nodes,
a ZooKeeper service, and a Mesos framework. The Mesos framework is further
subdivided into two components: a scheduler and an executor:

Managing Dockerized Microservices with Mesos and Marathon

[350]

The boxes in the preceding diagram are explained as follows:

•	 Master: The Mesos master is responsible for managing all the Mesos slaves.
The Mesos master gets information on the resource availability from all slave
nodes and take the responsibility of filling the resources appropriately based
on certain resource policies and constraints. The Mesos master preempts
available resources from all slave machines and pools them as a single
large machine. The master offers resources to frameworks running on slave
machines based on this resource pool.
For high availability, the Mesos master is supported by the Mesos master's
standby components. Even if the master is not available, the existing tasks
can still be executed. However, new tasks cannot be scheduled in the absence
of a master node. The master standby nodes are nodes that wait for the
failure of the active master and take over the master's role in the case of
a failure. It uses ZooKeeper for the master leader election. A minimum
quorum requirement must be met for leader election.

•	 Slave: Mesos slaves are responsible for hosting task execution frameworks.
Tasks are executed on the slave nodes. Mesos slaves can be started with
attributes as key-value pairs, such as data center = X. This is used for constraint
evaluations when deploying workloads. Slave machines share resource
availability with the Mesos master.

•	 ZooKeeper: ZooKeeper is a centralized coordination server used in Mesos
to coordinate activities across the Mesos cluster. Mesos uses ZooKeeper for
leader election in case of a Mesos master failure.

•	 Framework: The Mesos framework is responsible for understanding the
application's constraints, accepting resource offers from the master, and
finally running tasks on the slave resources offered by the master. The Mesos
framework consists of two components: the framework scheduler and the
framework executor:

°° The scheduler is responsible for registering to Mesos and handling
resource offers

°° The executor runs the actual program on Mesos slave nodes

The framework is also responsible for enforcing certain policies and
constraints. For example, a constraint can be, let's say, that a minimum
of 500 MB of RAM is available for execution.

Chapter 9

[351]

Frameworks are pluggable components and are replaceable with another
framework. The framework workflow is depicted in the following diagram:

The steps denoted in the preceding workflow diagram are elaborated as follows:

1.	 The framework registers with the Mesos master and waits for resource
offers. The scheduler may have many tasks in its queue to be executed
with different resource constraints (tasks A to D, in this example). A task,
in this case, is a unit of work that is scheduled—for example, a Spring Boot
microservice.

2.	 The Mesos slave offers the available resources to the Mesos master.
For example, the slave advertises the CPU and memory available with
the slave machine.

3.	 The Mesos master then creates a resource offer based on the allocation
policies set and offers it to the scheduler component of the framework.
Allocation policies determine which framework the resources are to be
offered to and how many resources are to be offered. The default policies
can be customized by plugging additional allocation policies.

4.	 The scheduler framework component, based on the constraints, capabilities,
and policies, may accept or reject the resource offering. For example,
a framework rejects the resource offer if the resources are insufficient
as per the constraints and policies set.

Managing Dockerized Microservices with Mesos and Marathon

[352]

5.	 If the scheduler component accepts the resource offer, it submits the details
of one more task to the Mesos master with resource constraints per task.
Let's say, in this example, that it is ready to submit tasks A to D.

6.	 The Mesos master sends this list of tasks to the slave where the resources
are available. The framework executor component installed on the slave
machines picks up and runs these tasks.

Mesos supports a number of frameworks, such as:

•	 Marathon and Aurora for long-running processes, such as web applications
•	 Hadoop, Spark, and Storm for big data processing
•	 Chronos and Jenkins for batch scheduling
•	 Cassandra and Elasticsearch for data management

In this chapter, we will use Marathon to run dockerized microservices.

Marathon
Marathon is one of the Mesos framework implementations that can run both
container as well as noncontainer execution. Marathon is particularly designed for
long-running applications, such as a web server. Marathon ensures that the service
started with Marathon continues to be available even if the Mesos slave it is hosted
on fails. This will be done by starting another instance.

Marathon is written in Scala and is highly scalable. Marathon offers a UI as well as
REST APIs to interact with Marathon, such as the start, stop, scale, and monitoring
applications.

Similar to Mesos, Marathon's high availability is achieved by running multiple
Marathon instances pointing to a ZooKeeper instance. One of the Marathon instances
acts as a leader, and others are in standby mode. In case the leading master fails, a
leader election will take place, and the next active master will be determined.

Some of the basic features of Marathon include:

•	 Setting resource constraints
•	 Scaling up, scaling down, and the instance management of applications
•	 Application version management
•	 Starting and killing applications

Chapter 9

[353]

Some of the advanced features of Marathon include:

•	 Rolling upgrades, rolling restarts, and rollbacks
•	 Blue-green deployments

Implementing Mesos and Marathon for
BrownField microservices
In this section, the dockerized Brownfield microservice developed in Chapter 8,
Containerizing Microservices with Docker, will be deployed into the AWS cloud and
managed with Mesos and Marathon.

For the purposes of demonstration, only three of the services (Search, Search API
Gateway, and Website) are covered in the explanations:

The logical architecture of the target state implementation is shown in the preceding
diagram. The implementation uses multiple Mesos slaves to execute dockerized
microservices with a single Mesos master. The Marathon scheduler component is
used to schedule dockerized microservices. Dockerized microservices are hosted on
the Docker Hub registry. Dockerized microservices are implemented using Spring
Boot and Spring Cloud.

Managing Dockerized Microservices with Mesos and Marathon

[354]

The following diagram shows the physical deployment architecture:

As shown in the preceding diagram, in this example, we will use four EC2 instances:

•	 EC2-M1: This hosts the Mesos master, ZooKeeper, the Marathon scheduler,
and one Mesos slave instance

•	 EC2-M2: This hosts one Mesos slave instance
•	 EC2-M3: This hosts another Mesos slave instance
•	 EC2-M4: This hosts Eureka, Config server, and RabbitMQ

For a real production setup, multiple Mesos masters as well as multiple instances
of Marathon are required for fault tolerance.

Setting up AWS
Launch the four t2.micro EC2 instances that will be used for this deployment.
All four instances have to be on the same security group so that the instances
can see each other using their local IP addresses.

Chapter 9

[355]

The following tables show the machine details and IP addresses for indicative
purposes and to link subsequent instructions:

Instance ID Private DNS/IP Public DNS/IP
i-06100786 ip-172-31-54-69.ec2.

internal

172.31.54.69

ec2-54-85-107-37.compute-1.
amazonaws.com

54.85.107.37

i-2404e5a7 ip-172-31-62-44.ec2.
internal

172.31.62.44

ec2-52-205-251-150.compute-1.
amazonaws.com

52.205.251.150

i-a7df2b3a ip-172-31-49-55.ec2.
internal

172.31.49.55

ec2-54-172-213-51.compute-1.
amazonaws.com

54.172.213.51

i-b0eb1f2d ip-172-31-53-109.ec2.
internal

172.31.53.109

ec2-54-86-31-240.compute-1.
amazonaws.com

54.86.31.240

Replace the IP and DNS addresses based on your AWS EC2 configuration.

Installing ZooKeeper, Mesos, and Marathon
The following software versions will be used for the deployment. The deployment
in this section follows the physical deployment architecture explained in the
earlier section:

•	 Mesos version 0.27.1
•	 Docker version 1.6.2, build 7c8fca2
•	 Marathon version 0.15.3

Managing Dockerized Microservices with Mesos and Marathon

[356]

The detailed instructions to set up ZooKeeper, Mesos, and
Marathon are available at https://open.mesosphere.
com/getting-started/install/.

Perform the following steps for a minimal installation of ZooKeeper, Mesos, and
Marathon to deploy the BrownField microservice:

1.	 As a prerequisite, JRE 8 must be installed on all the machines. Execute the
following command:
sudo apt-get -y install oracle-java8-installer

2.	 Install Docker on all machines earmarked for the Mesos slave via the
following command:
sudo apt-get install docker

3.	 Open a terminal window and execute the following commands.
These commands set up the repository for installation:
sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv
E56151BF

DISTRO=$(lsb_release -is | tr '[:upper:]' '[:lower:]')

CODENAME=$(lsb_release -cs)

Add the repository

echo "deb http://repos.mesosphere.com/${DISTRO} ${CODENAME} main"
| \

 sudo tee /etc/apt/sources.list.d/mesosphere.list

sudo apt-get -y update

4.	 Execute the following command to install Mesos and Marathon. This will
also install Zookeeper as a dependency:
sudo apt-get -y install mesos marathon

Repeat the preceding steps on all the three EC2 instances reserved for the Mesos
slave execution. As the next step, ZooKeeper and Mesos have to be configured on
the machine identified for the Mesos master.

Configuring ZooKeeper
Connect to the machine reserved for the Mesos master and Marathon scheduler.
In this case, 172.31.54.69 will be used to set up ZooKeeper, the Mesos master,
and Marathon.

https://open.mesosphere.com/getting-started/install/
https://open.mesosphere.com/getting-started/install/

Chapter 9

[357]

There are two configuration changes required in ZooKeeper, as follows:

1.	 The first step is to set /etc/zookeeper/conf/myid to a unique integer
between 1 and 255, as follows:
Open vi /etc/zookeeper/conf/myid and set 1.

2.	 The next step is to edit /etc/zookeeper/conf/zoo.cfg. Update the file to
reflect the following changes:
specify all zookeeper servers
The first port is used by followers to connect to the leader
The second one is used for leader election
server.1= 172.31.54.69:2888:3888
#server.2=zookeeper2:2888:3888
#server.3=zookeeper3:2888:3888

Replace the IP addresses with the relevant private IP address. In this case,
we will use only one ZooKeeper server, but in a production scenario,
multiple servers are required for high availability.

Configuring Mesos
Make changes to the Mesos configuration to point to ZooKeeper, set up a quorum,
and enable Docker support via the following steps:

1.	 Edit /etc/mesos/zk to set the following value. This is to point Mesos to a
ZooKeeper instance for quorum and leader election:
zk:// 172.31.54.69:2181/mesos

2.	 Edit the /etc/mesos-master/quorum file and set the value as 1. In a
production scenario, we may need a minimum quorum of three:
vi /etc/mesos-master/quorum

3.	 The default Mesos installation does not support Docker on Mesos slaves. In
order to enable Docker, update the following mesos-slave configuration:
echo 'docker,mesos' > /etc/mesos-slave/containerizers

Managing Dockerized Microservices with Mesos and Marathon

[358]

Running Mesos, Marathon, and ZooKeeper
as services
All the required configuration changes are implemented. The easiest way to start
Mesos, Marathon, and Zookeeper is to run them as services, as follows:

•	 The following commands start services. The services need to be started in
the following order:
sudo service zookeeper start

sudo service mesos-master start

sudo service mesos-slave start

sudo service marathon start

•	 At any point, the following commands can be used to stop these services:
sudo service zookeeper stop

sudo service mesos-master stop

sudo service mesos-slave stop

sudo service marathon stop

•	 Once the services are up and running, use a terminal window to verify
whether the services are running:

Chapter 9

[359]

Running the Mesos slave in the command line
In this example, instead of using the Mesos slave service, we will use a command-
line version to invoke the Mesos slave to showcase additional input parameters. Stop
the Mesos slave and use the command line as mentioned here to start the slave again:

$sudo service mesos-slave stop

$sudo /usr/sbin/mesos-slave --master=172.31.54.69:5050 --log_dir=/var/
log/mesos --work_dir=/var/lib/mesos --containerizers=mesos,docker --resou
rces="ports(*):[8000-9000, 31000-32000]"

The command-line parameters used are explained as follows:

•	 --master=172.31.54.69:5050: This parameter is to tell the Mesos
slave to connect to the correct Mesos master. In this case, there is only
one master running at 172.31.54.69:5050. All the slaves connect to
the same Mesos master.

•	 --containerizers=mesos,docker: This parameter is to enable support
for Docker container execution as well as noncontainerized executions on
the Mesos slave instances.

•	 --resources="ports(*):[8000-9000, 31000-32000]: This parameter
indicates that the slave can offer both ranges of ports when binding resources.
31000 to 32000 is the default range. As we are using port numbers starting
with 8000, it is important to tell the Mesos slave to allow exposing ports
starting from 8000 as well.

Perform the following steps to verify the installation of Mesos and Marathon:

1.	 Execute the command mentioned in the previous step to start the Mesos slave
on all the three instances designated for the slave. The same command can be
used across all three instances as all of them connect to the same master.

2.	 If the Mesos slave is successfully started, a message similar to the following
will appear in the console:
I0411 18:11:39.684809 16665 slave.cpp:1030] Forwarding total
oversubscribed resources

The preceding message indicates that the Mesos slave started sending the
current state of resource availability periodically to the Mesos master.

Managing Dockerized Microservices with Mesos and Marathon

[360]

3.	 Open http://54.85.107.37:8080 to inspect the Marathon UI. Replace the
IP address with the public IP address of the EC2 instance:

As there are no applications deployed so far, the Applications section of the
UI is empty.

4.	 Open the Mesos UI, which runs on port 5050, by going to
http://54.85.107.37:5050:

The Slaves section of the console shows that there are three activated Mesos
slaves available for execution. It also indicates that there is no active task.

Chapter 9

[361]

Preparing BrownField PSS services
In the previous section, we successfully set up Mesos and Marathon. In this section,
we will take a look at how to deploy the BrownField PSS application previously
developed using Mesos and Marathon.

The full source code of this chapter is available under the Chapter
9 project in the code files. Copy chapter8.configserver,
chapter8.eurekaserver, chapter8.search, chapter8.
search-apigateway, and chapter8.website into a new STS
workspace and rename them chapter9.*.

1.	 Before we deploy any application, we have to set up the Config server,
Eureka server, and RabbitMQ in one of the servers. Follow the steps
described in the Running BrownField services on EC2 section in Chapter 8,
Containerizing Microservices with Docker. Alternately, we can use the same
instance as used in the previous chapter for this purpose.

2.	 Change all bootstrap.properties files to reflect the Config server
IP address.

3.	 Before we deploy our services, there are a few specific changes required
on the microservices. When running dockerized microservices with the
BRIDGE mode on, we need to tell the Eureka client the hostname to be
used to bind. By default, Eureka uses the instance ID to register. However,
this is not helpful as Eureka clients won't be able to look up these services
using the instance ID. In the previous chapter, the HOST mode was used
instead of the BRIDGE mode.
The hostname setup can be done using the eureka.instance.hostname
property. However, when running on AWS specifically, an alternate
approach is to define a bean in the microservices to pick up AWS-specific
information, as follows:
@Configuration
class EurekaConfig {
@Bean
 public EurekaInstanceConfigBean eurekaInstanceConfigBean() {
 EurekaInstanceConfigBean config = new
EurekaInstanceConfigBean(new InetUtils(new
InetUtilsProperties()));
AmazonInfo info = AmazonInfo.Builder.newBuilder().
autoBuild("eureka");
 config.setDataCenterInfo(info);

Managing Dockerized Microservices with Mesos and Marathon

[362]

 info.getMetadata().put(AmazonInfo.MetaDataKey.
publicHostname.getName(), info.get(AmazonInfo.MetaDataKey.
publicIpv4));
 config.setHostname(info.get(AmazonInfo.MetaDataKey.
localHostname));
config.setNonSecurePortEnabled(true);
config.setNonSecurePort(PORT);
config.getMetadataMap().put("instanceId", info.get(AmazonInfo.
MetaDataKey.localHostname));
return config;
}

The preceding code provides a custom Eureka server configuration using
the Amazon host information using Netflix APIs. The code overrides the
hostname and instance ID with the private DNS. The port is read from
the Config server. This code also assumes one host per service so that the
port number stays constant across multiple deployments. This can also be
overridden by dynamically reading the port binding information at runtime.
The previous code has to be applied in all microservices.

4.	 Rebuild all the microservices using Maven. Build and push the Docker
images to the Docker Hub. The steps for the three services are shown
as follows. Repeat the same steps for all the other services. The working
directory needs to be switched to the respective directories before executing
these commands:
docker build -t search-service:1.0 .

docker tag search-service:1.0 rajeshrv/search-service:1.0

docker push rajeshrv/search-service:1.0

docker build -t search-apigateway:1.0 .

docker tag search-apigateway:1.0 rajeshrv/search-apigateway:1.0

docker push rajeshrv/search-apigateway:1.0

docker build -t website:1.0 .

docker tag website:1.0 rajeshrv/website:1.0

docker push rajeshrv/website:1.0

Chapter 9

[363]

Deploying BrownField PSS services
The Docker images are now published to the Docker Hub registry. Perform the
following steps to deploy and run BrownField PSS services:

1.	 Start the Config server, Eureka server, and RabbitMQ on its dedicated instance.
2.	 Make sure that the Mesos server and Marathon are running on the machine

where the Mesos master is configured.
3.	 Run the Mesos slave on all the machines as described earlier using the

command line.
4.	 At this point, the Mesos Marathon cluster is up and running and is ready to

accept deployments. The deployment can be done by creating one JSON file
per service, as shown here:
{
 "id": "search-service-1.0",
 "cpus": 0.5,
 "mem": 256.0,
 "instances": 1,
 "container": {
 "docker": {
 "type": "DOCKER",
 "image": "rajeshrv/search-service:1.0",
 "network": "BRIDGE",
 "portMappings": [
 { "containerPort": 0, "hostPort": 8090 }
]
 }
 }
}

The preceding JSON code will be stored in the search.json file. Similarly,
create a JSON file for other services as well.
The JSON structure is explained as follows:

°° id: This is the unique ID of the application. This can be a logical name.
°° cpus and mem: This sets the resource constraints for this application. If

the resource offer does not satisfy this resource constraint, Marathon
will reject this resource offer from the Mesos master.

°° instances: This decides how many instances of this application to
start with. In the preceding configuration, by default, it starts one
instance as soon as it gets deployed. Marathon maintains the number
of instances mentioned at any point.

Managing Dockerized Microservices with Mesos and Marathon

[364]

°° container: This parameter tells the Marathon executor to use a
Docker container for execution.

°° image: This tells the Marathon scheduler which Docker image has to
be used for deployment. In this case, this will download the search-
service:1.0 image from the Docker Hub repository rajeshrv.

°° network: This value is used for Docker runtime to advise on the
network mode to be used when starting the new docker container.
This can be BRIDGE or HOST. In this case, the BRIDGE mode will
be used.

°° portMappings: The port mapping provides information on how to
map the internal and external ports. In the preceding configuration,
the host port is set as 8090, which tells the Marathon executor to use
8090 when starting the service. As the container port is set as 0, the
same host port will be assigned to the container. Marathon picks up
random ports if the host port value is 0.

5.	 Additional health checks are also possible with the JSON descriptor, as
shown here:
"healthChecks": [
 {
 "protocol": "HTTP",
 "portIndex": 0,
 "path": "/admin/health",
 "gracePeriodSeconds": 100,
 "intervalSeconds": 30,
 "maxConsecutiveFailures": 5
 }
]

6.	 Once this JSON code is created and saved, deploy it to Marathon using the
Marathon REST APIs as follows:
curl -X POST http://54.85.107.37:8080/v2/apps -d @search.json -H
"Content-type: application/json"

Repeat this step for all the other services as well.
The preceding step will automatically deploy the Docker container to the
Mesos cluster and start one instance of the service.

Chapter 9

[365]

Reviewing the deployment
The steps for this are as follows:

1.	 Open the Marathon UI. As shown in the following screenshot, the UI shows
that all the three applications are deployed and are in the Running state.
It also indicates that 1 of 1 instance is in the Running state:

2.	 Visit the Mesos UI. As shown in the following screenshot, there are three
Active Tasks, all of them in the Running state. It also shows the host in
which these services run:

Managing Dockerized Microservices with Mesos and Marathon

[366]

3.	 In the Marathon UI, click on a running application. The following screenshot
shows the search-apigateway-1.0 application. In the Instances tab, the IP
address and port in which the service is bound is indicated:

The Scale Application button allows administrators to specify how many
instances of the service are required. This can be used to scale up as well as
scale down instances.

4.	 Open the Eureka server console to take a look at how the services are bound.
As shown in the screenshot, AMIs and Availability Zones are reflected
when services are registered. Follow http://52.205.251.150:8761:

Chapter 9

[367]

5.	 Open http://54.172.213.51:8001 in a browser to verify the
Website application.

A place for the life cycle manager
The life cycle manager introduced in Chapter 6, Autoscaling Microservices, has the
capability of autoscaling up or down instances based on demand. It also has the
ability to take decisions on where to deploy and how to deploy applications on
a cluster of machines based on polices and constraints. The life cycle manager's
capabilities are shown in the following figure:

Marathon has the capability to manage clusters and deployments to clusters based
on policies and constraints. The number of instances can be altered using the
Marathon UI.

There are redundant capabilities between our life cycle manager and Marathon.
With Marathon in place, SSH work or machine-level scripting is no longer required.
Moreover, deployment policies and constraints can be delegated to Marathon. The
REST APIs exposed by Marathon can be used to initiate scaling functions.

Marathon autoscale is a proof-of-concept project from Mesosphere for autoscaling.
The Marathon autoscale provides basic autoscale features such as the CPU, memory,
and rate of request.

Managing Dockerized Microservices with Mesos and Marathon

[368]

Rewriting the life cycle manager with Mesos
and Marathon
We still need a custom life cycle manager to collect metrics from the Spring Boot
actuator endpoints. A custom life cycle manager is also handy if the scaling rules
are beyond the CPU, memory, and rate of scaling.

The following diagram shows the updated life cycle manager using the
Marathon framework:

The life cycle manager, in this case, collects actuator metrics from different Spring
Boot applications, combines them with other metrics, and checks for certain
thresholds. Based on the scaling policies, the decision engine informs the scaling
engine to either scale down or scale up. In this case, the scaling engine is nothing
but a Marathon REST client. This approach is cleaner and neater than our earlier
primitive life cycle manager implementation using SSH and Unix scripts.

The technology metamodel
We have covered a lot of ground on microservices with the BrownField PSS
microservices. The following diagram sums it up by bringing together all the
technologies used into a technology metamodel:

Chapter 9

[369]

Summary
In this chapter, you learned the importance of a cluster management and init system
to efficiently manage dockerized microservices at scale.

We explored the different cluster control or cluster orchestration tools before diving
deep into Mesos and Marathon. We also implemented Mesos and Marathon in the
AWS cloud environment to demonstrate how to manage dockerized microservices
developed for BrownField PSS.

At the end of this chapter, we also explored the position of the life cycle manager
in conjunction with Mesos and Marathon. Finally, we concluded this chapter with a
technology metamodel based on the BrownField PSS microservices implementation.

So far, we have discussed all the core and supporting technology capabilities
required for a successful microservices implementation. A successful microservice
implementation also requires processes and practices beyond technology. The next
chapter, the last in the book, will cover the process and practice perspectives of
microservices.

[371]

The Microservices
Development Life Cycle

Similar to the software development life cycle (SDLC), it is important to understand
the aspects of the microservice development life cycle processes for a successful
implementation of the microservices architecture.

This final chapter will focus on the development process and practice of
microservices with the help of BrownField Airline's PSS microservices example.
Furthermore, this chapter will describe best practices in structuring development
teams, development methodologies, automated testing, and continuous delivery
of microservices in line with DevOps practices. Finally, this chapter will conclude
by shedding light on the importance of the reference architecture in a decentralized
governance approach to microservices.

By the end of this chapter, you will learn about the following topics:

•	 Reviewing DevOps in the context of microservices development
•	 Defining the microservices life cycle and related processes
•	 Best practices around the development, testing, and deployment of

Internet-scale microservices

The Microservices Development Life Cycle

[372]

Reviewing the microservice capability
model
This chapter will cover the following microservices capabilities from the microservices
capability model discussed in Chapter 3, Applying Microservices Concepts:

•	 DevOps
•	 DevOps Tools
•	 Reference Architecture & Libraries
•	 Testing Tools (Anti-Fragile, RUM etc)

The new mantra of lean IT – DevOps
We discussed the definition of DevOps in Chapter 2, Building Microservices with Spring
Boot. Here is a quick recap of the DevOps definition.

Gartner defines DevOps as follows:

"DevOps represents a change in IT culture, focusing on rapid IT service delivery
through the adoption of agile, lean practices in the context of a system-oriented
approach. DevOps emphasizes people (and culture), and seeks to improve
collaboration between operations and development teams. DevOps implementations
utilize technology — especially automation tools that can leverage an increasingly
programmable and dynamic infrastructure from a life cycle perspective."

Chapter 10

[373]

DevOps and microservices evolved independently. Chapter 1, Demystifying
Microservices, explored the evolution of microservices. In this section, we will
review the evolution of DevOps and then take a look at how DevOps supports
microservices adoption.

In the era of digital disruption and in order to support modern business, IT
organizations have to master two key areas: speed of delivery and value-driven
delivery. This is obviously apart from being expert in leading technologies.

Many IT organizations failed to master this change, causing frustration to business
users. To overcome this situation, many business departments started their own
shadow IT or stealth IT under their control. Some smart IT organizations then
adopted a lean IT model to respond to these situations.

However, many organizations still struggle with this transformation due to the large
baggage of legacy systems and processes. Gartner coined the concept of a pace-
layered application strategy. Gartner's view is that high speed is required only for
certain types of applications or certain business areas. Gartner termed this a system
of innovation. A system of innovation requires rapid innovations compared to a
system of records. As a system of innovations needs rapid innovation, a lean IT
delivery model is essential for such applications. Practitioners evangelized the lean
IT model as DevOps.

There are two key strategies used by organizations to adopt DevOps.

Some organizations positioned DevOps as a process to fill the gaps in their existing
processes. Such organizations adopted an incremental strategy for their DevOps
journey. The adoption path starts with Agile development, then incrementally
adopts continuous integration, automated testing, and release to production and
then all DevOps practices. The challenge in such organizations is the time to realize
the full benefits as well as the mixed culture of people due to legacy processes.

Many organizations, therefore, take a disruptive approach to adopt DevOps. This
will be achieved by partitioning IT into two layers or even as two different IT units.
The high-speed layer of IT uses DevOps-style practices to dramatically change the
culture of the organization with no connection to the legacy processes and practices.
A selective application cluster will be identified and moved to the new IT based on
the business value:

The Microservices Development Life Cycle

[374]

The intention of DevOps is not just to reduce cost. It also enables the business
to disrupt competitors by quickly moving ideas to production. DevOps attacks
traditional IT issues in multiple ways, as explained here.

Reducing wastage
DevOps processes and practices essentially speed up deliveries which improves
quality. The speed of delivery is achieved by cutting IT wastage. This is achieved by
avoiding work that adds no value to the business nor to desired business outcomes.
IT wastage includes software defects, productivity issues, process overheads,
time lag in decision making, time spent in reporting layers, internal governance,
overestimation, and so on. By reducing these wastages, organizations can radically
improve the speed of delivery. The wastage is reduced by primarily adopting Agile
processes, tools, and techniques.

Automating every possible step
By automating the manually executed tasks, one can dramatically improve the
speed of delivery as well as the quality of deliverables. The scope of automation
goes from planning to customer feedback. Automation reduces the time to move
business ideas to production. This also reduces a number of manual gate checks,
bureaucratic decision making, and so on. Automated monitoring mechanisms and
feedback go back to the development factory, which gets it fixed and quickly moved
to production.

Value-driven delivery
DevOps reduces the gap between IT and business through value-driven delivery.
Value-driven delivery closely aligns IT to business by understanding true business
values and helps the business by quickly delivering these values, which can give
a competitive advantage. This is similar to the shadow IT concept, in which IT is
collocated with the business and delivers business needs quickly, rather than
waiting for heavy project investment-delivery cycles.

Traditionally, IT is partially disconnected from the business and works with IT
KPIs, such as the number of successful project deliveries, whereas in the new model,
IT shares business KPIs. As an example, a new IT KPI could be that IT helped
business to achieve a 10% increase in sales orders or led to 20% increase in customer
acquisition. This will shift IT's organizational position from merely a support
organization to a business partner.

Chapter 10

[375]

Bridging development and operations
Traditionally, IT has different teams for development and operations. In many cases,
they are differentiated with logical barriers. DevOps reduces the gap between the
development and operations teams so that it can potentially reduce wastage and
improve quality. Multidisciplinary teams work together to address problems at
hand rather than throwing mud across the wall.

With DevOps, operations teams will have a fairly good understanding about the
services and applications developed by development teams. Similarly, development
teams will have a good handle on the infrastructure components and configurations
used by the applications. As a result, operations teams can make decisions based
exactly on service behaviors rather than enforcing standard organizational policies
and rules when designing infrastructure components. This would eventually help
the IT organization to improve the quality of the product as well as the time to
resolve incidents and problem management.

In the DevOps world, speed of delivery is achieved through the automation of
high-velocity changes, and quality is achieved through automation and people.
Business values are achieved through efficiency, speed of delivery, quality, and the
ability to innovate. Cost reduction is achieved through automation, productivity,
and reducing wastage.

Meeting the trio – microservices,
DevOps, and cloud
The trio—cloud, microservices, and DevOps—targets a set of common objectives:
speed of delivery, business value, and cost benefit. All three can stay and evolve
independently, but they complement each other to achieve the desired common
goals. Organizations embarking on any of these naturally tend to consider the other
two as they are closely linked together:

The Microservices Development Life Cycle

[376]

Many organizations start their journey with DevOps as an organizational practice
to achieve high-velocity release cycles but eventually move to the microservices
architecture and cloud. It is not mandatory to have microservices and cloud support
DevOps. However, automating the release cycles of large monolithic applications
does not make much sense, and in many cases, it would be impossible to achieve.
In such scenarios, the microservices architecture and cloud will be handy when
implementing DevOps.

If we flip a coin, cloud does not need a microservices architecture to achieve its
benefits. However, to effectively implement microservices, both cloud and DevOps
are essential.

In summary, if the objective of an organization is to achieve a high speed of delivery
and quality in a cost-effective way, the trio together can bring tremendous success.

Cloud as the self-service infrastructure for
Microservices
The main driver for cloud is to improve agility and reduce cost. By reducing the time
to provision the infrastructure, the speed of delivery can be increased. By optimally
utilizing the infrastructure, one can bring down the cost. Therefore, cloud directly
helps achieve both speed of delivery and cost.

As discussed in Chapter 9, Managing Dockerized Microservices with Mesos and Marathon,
without having a cloud infrastructure with cluster management software, it would
be hard to control the infrastructure cost when deploying microservices. Hence, the
cloud with self-service capabilities is essential for microservices to achieve their full
potential benefits. In the microservices context, the cloud not only helps abstract the
physical infrastructure but also provides software APIs for dynamic provisioning
and automatic deployments. This is referred to as infrastructure as code or
software-defined infrastructure.

DevOps as the practice and process for
microservices
Microservice is an architecture style that enables quick delivery. However,
microservices cannot provide the desired benefits by themselves. A microservices-
based project with a delivery cycle of 6 months does not give the targeted speed of
delivery or business agility. Microservices need a set of supporting delivery practices
and processes to effectively achieve their goal.

Chapter 10

[377]

DevOps is the ideal candidate for the underpinning process and practices
for microservice delivery. DevOps processes and practices gel well with the
microservices architecture's philosophies.

Practice points for microservices
development
For a successful microservice delivery, a number of development-to-delivery
practices need to be considered, including the DevOps philosophy. In the previous
chapters, you learned the different architecture capabilities of microservices. In this
section, we will explore the nonarchitectural aspects of microservice developments.

Understanding business motivation and value
Microservices should not be used for the sake of implementing a niche architecture
style. It is extremely important to understand the business value and business KPIs
before selecting microservices as an architectural solution for a given problem. A
good understanding of business motivation and business value will help engineers
focus on achieving these goals in a cost-effective way.

Business motivation and value should justify the selection of microservices. Also,
using microservices, the business value should be realizable from a business point
of view. This will avoid situations where IT invests in microservices but there is no
appetite from the business to leverage any of the benefits that microservices can
bring to the table. In such cases, a microservices-based development would be an
overhead to the enterprise.

Changing the mindset from project to product
development
As discussed in Chapter 1, Demystifying Microservices, microservices are more aligned
to product development. Business capabilities that are delivered using microservices
should be treated as products. This is in line with the DevOps philosophy as well.

The mindset for project development and product development is different. The
product team will always have a sense of ownership and take responsibility for what
they produce. As a result, product teams always try to improve the quality of the
product. The product team is responsible not only for delivering the software but
also for production support and maintenance of the product.

The Microservices Development Life Cycle

[378]

Product teams are generally linked directly to a business department for which
they are developing the product. In general, product teams have both an IT and a
business representative. As a result, product thinking is closely aligned with actual
business goals. At every moment, product teams understand the value they are
adding to the business to achieve business goals. The success of the product directly
lies with the business value being gained out of the product.

Because of the high-velocity release cycles, product teams always get a sense of
satisfaction in their delivery, and they always try to improve on it. This brings
a lot more positive dynamics within the team.

In many cases, typical product teams are funded for the long term and remain intact.
As a result, product teams become more cohesive in nature. As they are small in size,
such teams focus on improving their process from their day-to-day learnings.

One common pitfall in product development is that IT people represent the business
in the product team. These IT representatives may not fully understand the business
vision. Also, they may not be empowered to take decisions on behalf of the business.
Such cases can result in a misalignment with the business and lead to failure
quite rapidly.

It is also important to consider a collocation of teams where business and IT
representatives reside at the same place. Collocation adds more binding between
IT and business teams and reduces communication overheads.

Choosing a development philosophy
Different organizations take different approaches to developing microservices, be it a
migration or a new development. It is important to choose an approach that suits the
organization. There is a wide verity of approaches available, out of which a few are
explained in this section.

Design thinking
Design thinking is an approach primarily used for innovation-centric development.
It is an approach that explores the system from an end user point of view: what the
customers see and how they experience the solution. A story is then built based on
observations, patterns, intuition, and interviews.

Design thinking then quickly devises solutions through solution-focused thinking
by employing a number of theories, logical reasoning, and assumptions around the
problem. The concepts are expanded through brainstorming before arriving at a
converged solution.

Chapter 10

[379]

Once the solution is identified, a quick prototype is built to consider how the
customer responds to it, and then the solution is adjusted accordingly. When the
team gets satisfactory results, the next step is taken to scale the product. Note that
the prototype may or may not be in the form of code.

Design thinking uses human-centric thinking with feelings, empathy, intuition, and
imagination at its core. In this approach, solutions will be up for rethinking even for
known problems to find innovative and better solutions.

The start-up model
More and more organizations are following the start-up philosophy to deliver
solutions. Organizations create internal start-up teams with the mission to deliver
specific solutions. Such teams stay away from day-to-day organizational activities
and focus on delivering their mission.

Many start-ups kick off with a small, focused team—a highly cohesive unit. The unit
is not worried about how they achieve things; rather, the focus is on what they want
to achieve. Once they have a product in place, the team thinks about the right way
to build and scale it.

This approach addresses quick delivery through production-first thinking. The
advantage with this approach is that teams are not disturbed by organizational
governance and political challenges. The team is empowered to think out of the box,
be innovative, and deliver things. Generally, a higher level of ownership is seen in
such teams, which is one of the key catalysts for success. Such teams employ just
enough processes and disciplines to take the solution forward. They also follow
a fail fast approach and course correct sooner than later.

The Agile practice
The most commonly used approach is the Agile methodology for development.
In this approach, software is delivered in an incremental, iterative way using the
principles put forth in the Agile manifesto. This type of development uses an Agile
method such as Scrum or XP. The Agile manifesto defines four key points that Agile
software development teams should focus on:

•	 Individuals and interaction over processes and tools
•	 Working software over comprehensive documentation
•	 Customer collaboration over contract negotiation
•	 Responding to change over following a plan

The Microservices Development Life Cycle

[380]

The 12 principles of Agile software development can be found at
http://www.agilemanifesto.org/principles.html.

Using the concept of Minimum Viable Product
Irrespective of the development philosophy explained earlier, it is essential
to identify a Minimum Viable Product (MVP) when developing microservice
systems for speed and agility.

Eric Ries, while pioneering the lean start-up movement, defined MVP as:

"A Minimum Viable Product is that version of a new product which allows a team
to collect the maximum amount of validated learning about customers with the
least effort."

The objective of the MVP approach is to quickly build a piece of software that
showcases the most important aspects of the software. The MVP approach realizes
the core concept of an idea and perhaps chooses those features that add maximum
value to the business. It helps get early feedback and then course corrects as
necessary before building a heavy product.

The MVP may be a full-fledged service addressing limited user groups or partial
services addressing wider user groups. Feedback from customers is extremely
important in the MVP approach. Therefore, it is important to release the MVP
to the real users.

Overcoming the legacy hotspot
It is important to understand the environmental and political challenges in an
organization before embarking on microservices development.

It is common in microservices to have dependencies on other legacy applications,
directly or indirectly. A common issue with direct legacy integration is the slow
development cycle of the legacy application. An example would be an innovative
railway reservation system relaying on an age-old transaction processing facility
(TPF) for some of the core backend features, such as reservation. This is especially
common when migrating legacy monolithic applications to microservices. In many
cases, legacy systems continue to undergo development in a non-Agile way with
larger release cycles. In such cases, microservices development teams may not be
able to move so quickly because of the coupling with legacy systems. Integration
points might drag the microservices developments heavily. Organizational political
challenges make things even worse.

http://www.agilemanifesto.org/principles.html

Chapter 10

[381]

There is no silver bullet to solve this issue. The cultural and process differences could
be an ongoing issue. Many enterprises ring-fence such legacy systems with focused
attention and investments to support fast-moving microservices. Targeted C-level
interventions on these legacy platforms could reduce the overheads.

Addressing challenges around databases
Automation is key in microservices development. Automating databases is one
of the key challenges in many microservice developments.

In many organizations, DBAs play a critical role in database management, and they
like to treat the databases under their control differently. Confidentiality and access
control on data is also cited as a reason for DBAs to centrally manage all data.

Many automation tools focus on the application logic. As a result, many development
teams completely ignore database automation. Ignoring database automation can
severely impact the overall benefits and can derail microservices development.

In order to avoid such situations, the database has to be treated in the same way
as applications with appropriate source controls and change management. When
selecting a database, it is also important to consider automation as one of the
key aspects.

Database automation is much easier in the case of NoSQL databases but is hard
to manage with traditional RDBMs. Database Lifecycle Management (DLM) as a
concept is popular in the DevOps world, particularly to handle database automation.
Tools such as DBmaestro, Redgate DLM, Datical DB, and Delphix support database
automation.

Establishing self-organizing teams
One of the most important activities in microservices development is to establish the
right teams for development. As recommended in many DevOps processes, a small,
focused team always delivers the best results.

The Microservices Development Life Cycle

[382]

As microservices are aligned with business capabilities and are fairly loosely coupled
products, it is ideal to have a dedicated team per microservice. There could be cases
where the same team owns multiple microservices from the same business area
representing related capabilities. These are generally decided by the coupling and
size of the microservices.

Team size is an important aspect in setting up effective teams for microservices
development. The general notion is that the team size should not exceed 10 people.
The recommended size for optimal delivery is between 4 and 7. The founder of
Amazon.com, Jeff Bezos, coined the theory of two-pizza teams. Jeff's theory says the
team will face communication issues if the size gets bigger. Larger teams work with
consensus, which results in increased wastage. Large teams also lose ownership
and accountability. A yardstick is that the product owner should get enough time
to speak to individuals in the team to make them understand the value of what they
are delivering.

Teams are expected to take full ownership in ideating for, analyzing, developing,
and supporting services. Werner Vogels from Amazon.com calls this you build it
and you run it. As per Werner's theory, developers pay more attention to develop
quality code to avoid unexpected support calls. The members in the team consist
of fullstack developers and operational engineers. Such a team is fully aware of all
the areas. Developers understand operations as well as operations teams understand
applications. This not only reduces the changes of throwing mud across teams but
also improves quality.

Teams should have multidisciplinary skills to satisfy all the capabilities required to
deliver a service. Ideally, the team should not rely on external teams to deliver the
components of the service. Instead, the team should be self-sufficient. However, in
most organizations, the challenge is on specialized skills that are rare. For example,
there may not be many experts on a graph database in the organization. One common
solution to this problem is to use the concept of consultants. Consultants are SMEs
and are engaged to gain expertise on specific problems faced by the team. Some
organizations also use shared or platform teams to deliver some common capabilities.

Team members should have a complete understanding of the products, not only
from the technical standpoint but also from the business case and the business KPIs.
The team should have collective ownership in delivering the product as well as in
achieving business goals together.

Chapter 10

[383]

Agile software development also encourages having self-organizing teams. Self-
organizing teams act as a cohesive unit and find ways to achieve their goals as a
team. The team automatically align themselves and distribute the responsibilities.
The members in the team are self-managed and empowered to make decisions in
their day-to-day work. The team's communication and transparency are extremely
important in such teams. This emphasizes the need for collocation and collaboration,
with a high bandwidth for communication:

In the preceding diagram, both Microservice A and Microservice B represent related
business capabilities. Self-organizing teams treat everyone in the team equally,
without too many hierarchies and management overheads within the team. The
management would be thin in such cases. There won't be many designated vertical
skills in the team, such as team lead, UX manager, development manager, testing
manager, and so on. In a typical microservice development, a shared product
manager, shared architect, and a shared people manager are good enough to manage
the different microservice teams. In some organizations, architects also take up
responsibility for delivery.

Self-organizing teams have some level of autonomy and are empowered to take
decisions in a quick and Agile mode rather than having to wait for long-running
bureaucratic decision-making processes that exist in many enterprises. In many
of these cases, enterprise architecture and security are seen as an afterthought.
However, it is important to have them on board from the beginning. While
empowering the teams with maximum freedom for developers in decision-making
capabilities, it is equally important to have fully automated QA and compliance so
as to ensure that deviations are captured at the earliest.

The Microservices Development Life Cycle

[384]

Communication between teams is important. However, in an ideal world, it should
be limited to interfaces between microservices. Integrations between teams ideally
has to be handled through consumer-driven contracts in the form of test scripts
rather than having large interface documents describing various scenarios. Teams
should use mock service implementations when the services are not available.

Building a self-service cloud
One of the key aspects that one should consider before embarking on microservices
is to build a cloud environment. When there are only a few services, it is easy
to manage them by manually assigning them to a certain predesignated set of
virtual machines.

However, what microservice developers need is more than just an IaaS cloud
platform. Neither the developers nor the operations engineers in the team should
worry about where the application is deployed and how optimally it is deployed.
They also should not worry about how the capacity is managed.

This level of sophistication requires a cloud platform with self-service capabilities,
such as what we discussed in Chapter 9, Managing Dockerized Microservices with
Mesos and Marathon, with the Mesos and Marathon cluster management solutions.
Containerized deployment discussed in Chapter 8, Containerizing Microservices with
Docker, is also important in managing and end to-end-automation. Building this
self-service cloud ecosystem is a prerequisite for microservice development.

Building a microservices ecosystem
As we discussed in the capability model in Chapter 3, Applying Microservices Concepts,
microservices require a number of other capabilities. All these capabilities should be
in place before implementing microservices at scale.

These capabilities include service registration, discovery, API gateways, and an
externalized configuration service. All are provided by the Spring Cloud project.
Capabilities such as centralized logging, monitoring, and so on are also required
as a prerequisite for microservices development.

Chapter 10

[385]

Defining a DevOps-style microservice life
cycle process
DevOps is the best-suited practice for microservices development. Organizations
already practicing DevOps do not need another practice for microservices
development.

In this section, we will explore the life cycle of microservices development. Rather
than reinventing a process for microservices, we will explore DevOps processes
and practices from the microservice perspective.

Before we explore DevOps processes, let's iron out some of the common
terminologies used in the DevOps world:

•	 Continuous integration (CI): This automates the application build and
quality checks continuously in a designated environment, either in a
time-triggered manner or on developer commits. CI also publishes code
metrics to a central dashboard as well as binary artifacts to a central
repository. CI is popular in Agile development practices.

•	 Continuous delivery (CD): This automates the end-to-end software delivery
practice from idea to production. In a non-DevOps model, this used to be
known as Application Lifecycle Management (ALM). One of the common
interpretations of CD is that it is the next evolution of CI, which adds QA
cycles into the integration pipeline and makes the software ready to release
to production. A manual action is required to move it to production.

•	 Continuous deployment: This is an approach to automating the deployment
of application binaries to one or more environments by managing binary
movement and associated configuration parameters. Continuous deployment
is also considered as the next evolution of CD by integrating automatic
release processes into the CD pipeline.

•	 Application Release Automation (ARA): ARA tools help monitor and
manage end-to-end delivery pipelines. ARA tools use CI and CD tools and
manage the additional steps of release management approvals. ARA tools
are also capable of rolling out releases to different environments and rolling
them back in case of a failed deployment. ARA provides a fully orchestrated
workflow pipeline, implementing delivery life cycles by integrating many
specialized tools for repository management, quality assurance, deployment,
and so on. XL Deploy and Automic are some of the ARA tools.

The Microservices Development Life Cycle

[386]

The following diagram shows the DevOps process for microservices development:

Let's now further explore these life cycle stages of microservices development.

Value-driven planning
Value-driven planning is a term used in Agile development practices. Value-driven
planning is extremely important in microservices development. In value-driven
planning, we will identify which microservices to develop. The most important
aspect is to identify those requirements that have the highest value to business and
those that have the lowest risks. The MVP philosophy is used when developing
microservices from the ground up. In the case of monolithic to microservices
migration, we will use the guidelines provided in Chapter 3, Applying Microservices
Concepts, to identify which services have to be taken first. The selected microservices
are expected to precisely deliver the expected value to the business. Business KPIs
to measure this value have to be identified as part of value-driven planning.

Agile development
Once the microservices are identified, development must be carried out in an Agile
approach following the Agile manifesto principles. The scrum methodology is used
by most of the organizations for microservices development.

Continuous integration
The continuous integration steps should be in place to automatically build the source
code produced by various team members and generate binaries. It is important to
build only once and then move the binary across the subsequent phases. Continuous
integration also executes various QAs as part of the build pipeline, such as code
coverage, security checks, design guidelines, and unit test cases. CI typically delivers
binary artefacts to a binary artefact repository and also deploys the binary artefacts
into one or more environments. Part of the functional testing also happens as part
of CI.

Chapter 10

[387]

Continuous testing
Once continuous integration generates the binaries, they are moved to the testing
phase. A fully automated testing cycle is kicked off in this phase. It is also important
to automate security testing as part of the testing phase. Automated testing
helps improve the quality of deliverables. The testing may happen in multiple
environments based on the type of testing. This could range from the integration
test environment to the production environment to test in production.

Continuous release
Continuous release to production takes care of actual deployment, infrastructure
provisioning, and rollout. The binaries are automatically shipped and deployed to
production by applying certain rules. Many organizations stop automation with the
staging environment and make use of manual approval steps to move to production.

Continuous monitoring and feedback
The continuous monitoring and feedback phase is the most important phase in Agile
microservices development. In an MVP scenario, this phase gives feedback on the
initial acceptance of the MVP and also evaluates the value of the service developed.
In a feature addition scenario, this further gives insight into how this new feature
is accepted by users. Based on the feedback, the services are adjusted and the same
cycle is then repeated.

Automating the continuous delivery pipeline
In the previous section, we discussed the life cycle of microservices development.
The life cycle stages can be altered by organizations based on their organizational
needs but also based on the nature of the application. In this section, we will take
a look at a sample continuous delivery pipeline as well as toolsets to implement a
sample pipeline.

There are many tools available to build end-to-end pipelines, both in the open
source and commercial space. Organizations can select the products of their
choice to connect pipeline tasks.

Refer to the XebiaLabs periodic table for a tool reference to build
continuous delivery pipelines. It is available at https://xebialabs.
com/periodic-table-of-devops-tools/.

https://xebialabs.com/periodic-table-of-devops-tools/
https://xebialabs.com/periodic-table-of-devops-tools/

The Microservices Development Life Cycle

[388]

The pipelines may initially be expensive to set up as they require many toolsets
and environments. Organizations may not realize an immediate cost benefit in
implementing the delivery pipeline. Also, building a pipeline needs high-power
resources. Large build pipelines may involve hundreds of machines. It also takes
hours to move changes through the pipeline from one end to the other. Hence, it is
important to have different pipelines for different microservices. This will also help
decoupling between the releases of different microservices.

Within a pipeline, parallelism should be employed to execute tests on different
environments. It is also important to parallelize the execution of test cases as much
as possible. Hence, designing the pipeline based on the nature of the application is
important. There is no one size fits all scenario.

The key focus in the pipeline is on end-to-end automation, from development
to production, and on failing fast if something goes wrong.

The following pipeline is an indicative one for microservices and explores the
different capabilities that one should consider when developing a microservices
pipeline:

The continuous delivery pipeline stages are explained in the following sections.

Chapter 10

[389]

Development
The development stage has the following activities from a development perspective.
This section also indicates some of the tools that can be used in the development
stage. These tools are in addition to the planning, tracking, and communication tools
such as Agile JIRA, Slack, and others used by Agile development teams. Take a look
at the following:

•	 Source code: The development team requires an IDE or a development
environment to cut source code. In most organizations, developers get the
freedom to choose the IDEs they want. Having said this, the IDEs can be
integrated with a number of tools to detect violations against guidelines.
Generally, Eclipse IDEs have plugins for static code analysis and code
matrices. SonarQube is one example that integrates other plugins such as
Checkstyle for code conventions, PMD to detect bad practices, FindBugs
to detect potential bugs, and Cobertura for code coverage. It is also
recommended to use Eclipse plugins such as ESVD, Find Security Bugs,
SonarQube Security Rules, and so on to detect security vulnerabilities.

•	 Unit test cases: The development team also produces unit test cases
using JUnit, NUnit, TestNG, and so on. Unit test cases are written against
components, repositories, services, and so on. These unit test cases are
integrated with the local Maven builds. The unit test cases targeting the
microservice endpoints (service tests) serve as the regression test pack.
Web UI, if written in AngularJS, can be tested using Karma.

•	 Consumer-driven contracts: Developers also write CDCs to test integration
points with other microservices. Contract test cases are generally written
as JUnit, NUnit, TestNG, and so on and are added to the service tests pack
mentioned in the earlier steps.

•	 Mock testing: Developers also write mocks to simulate the integration
endpoints to execute unit test cases. Mockito, PowerMock, and others are
generally used for mock testing. It is good practice to deploy a mock service
based on the contract as soon as the service contract is identified. This acts as
a simple mechanism for service virtualization for the subsequent phases.

•	 Behavior driven design (BDD): The Agile team also writes BDD scenarios
using a BDD tool, such as Cucumber. Typically, these scenarios are targeted
against the microservices contract or the user interface that is exposed by a
microservice-based web application. Cucumber with JUnit and Cucumber
with Selenium WebDriver, respectively, are used in these scenarios. Different
scenarios are used for functional testing, user journey testing, as well as
acceptance testing.

The Microservices Development Life Cycle

[390]

•	 Source code repository: A source control repository is a part and parcel of
development. Developers check-in their code to a central repository, mostly
with the help of IDE plugins. One microservice per repository is a common
pattern used by many organizations. This disallows other microservice
developers from modifying other microservices or writing code based on
the internal representations of other microservices. Git and Subversion are
the popular choices to be used as source code repositories.

•	 Build tools: A build tool such as Maven or Gradle is used to manage
dependencies and build target artifacts—in this case, Spring Boot services.
There are many cases, such as basic quality checks, security checks and unit
test cases, code coverage, and so on, that are integrated as part of the build
itself. These are similar to the IDE, especially when IDEs are not used by
developers. The tools that we examined as part of the IDEs are also available
as Maven plugins. The development team does not use containers such as
Docker until the CI phase of the project. All the artifacts have to be versioned
properly for every change.

•	 Artifact repository: The artifact repository plays a pivotal role in the
development process. The artifact repository is where all build artifacts
are stored. The artifact repository could be Artifactory, Nexus, or any
similar product.

•	 Database schemas: Liquibase and Flyway are commonly used to manage,
track, and apply database changes. Maven plugins allow interaction with
the Liquibase or Flyway libraries. The schema changes are versioned and
maintained, just like source code.

Continuous integration
Once the code is committed to the repository, the next phase, continuous integration,
automatically starts. This is done by configuring a CI pipeline. This phase builds the
source code with a repository snapshot and generates deployable artifacts. Different
organizations use different events to kickstart the build. A CI start event may be on
every developer commit or may be based on a time window, such as daily, weekly,
and so on.

The CI workflow is the key aspect of this phase. Continuous integration tools such as
Jenkins, Bamboo, and others play the central role of orchestrating the build pipeline.
The tool is configured with a workflow of activities to be invoked. The workflow
automatically executes configured steps such as build, deploy, and QA. On the
developer commit or on a set frequency, the CI kickstarts the workflow.

Chapter 10

[391]

The following activities take place in a continuous integration workflow:

1.	 Build and QA: The workflow listens to Git webhooks for commits. Once it
detects a change, the first activity is to download the source code from the
repository. A build is executed on the downloaded snapshot source code.
As part of the build, a number of QA checks are automatically performed,
similarly to QA executed in the development environment. These include
code quality checks, security checks, and code coverage. Many of the QAs
are done with tools such as SonarQube, with the plugins mentioned earlier. It
also collects code metrics such as code coverage and more and publishes it to
a central database for analysis. Additional security checks are executed using
OWASP ZAP Jenkins' plugins. As part of the build, it also executes JUnit or
similar tools used to write test cases. If the web application supports Karma
for UI testing, Jenkins is also capable of running web tests written in Karma.
If the build or QA fails, it sends out alarms as configured in the system.

2.	 Packaging: Once build and QA are passed, the CI creates a deployable
package. In our microservices case, it generates the Spring Boot standalone
JAR. It is recommended to build Docker images as part of the integration
build. This is the one and only place where we build binary artifacts. Once
the build is complete, it pushes the immutable Docker images to a Docker
registry. This could be on Docker Hub or a private Docker registry. It is
important to properly version control the containers at this stage itself.

3.	 Integration tests: The Docker image is moved to the integration environment
where regression tests (service tests) and the like are executed. This
environment has other dependent microservices capabilities, such as
Spring Cloud, logging, and so on, in place. All dependent microservices
are also present in this environment. If an actual dependent service is not
yet deployed, service virtualization tools such as MockServer are used.
Alternately, a base version of the service is pushed to Git by the respective
development teams. Once successfully deployed, Jenkins triggers service tests
(JUnits against services), a set of end-to-end sanity tests written in Selenium
WebDriver (in the case of web) and security tests with OWASP ZAP.

Automated testing
There are many types of testing to be executed as part of the automated delivery
process before declaring the build ready for production. The testing may happen
by moving the application across multiple environments. Each environment is
designated for a particular kind of testing, such as acceptance testing, performance
testing, and so on. These environments are adequately monitored to gather the
respective metrics.

The Microservices Development Life Cycle

[392]

In a complex microservices environment, testing should not be seen as a last-minute
gate check; rather, testing should be considered as a way to improve software quality
as well as to avoid last-minute failures. Shift left testing is an approach of shifting
tests as early as possible in the release cycle. Automated testing turns software
development to every-day development and every-day testing mode. By automating
test cases, we will avoid manual errors as well as the effort required to complete
testing.

CI or ARA tools are used to move Docker images across multiple test environments.
Once deployed in an environment, test cases are executed based on the purpose
of the environment. By default, a set of sanity tests are executed to verify the test
environment.

In this section, we will cover all the types of tests that are required in the automated
delivery pipeline, irrespective of the environment. We have already considered
some types of tests as part of the development and integration environment. Later
in this section, we will also map test cases against the environments in which they
are executed.

Different candidate tests for automation
In this section, we will explore different types of tests that are candidates for
automation when designing an end-to-end delivery pipeline. The key testing
types are described as follows.

Automated sanity tests
When moving from one environment to another, it is advisable to run a few
sanity tests to make sure that all the basic things are working. This is created as
a test pack using JUnit service tests, Selenium WebDriver, or a similar tool. It is
important to carefully identify and script all the critical service calls. Especially if the
microservices are integrated using synchronous dependencies, it is better to consider
these scenarios to ensure that all dependent services are also up and running.

Regression testing
Regression tests ensure that changes in software don't break the system. In a
microservices context, the regression tests could be at the service level (Rest API or
message endpoints) and written using JUnit or a similar framework, as explained
earlier. Service virtualizations are used when dependent services are not available.
Karma and Jasmine can be used for web UI testing.

Chapter 10

[393]

In cases where microservices are used behind web applications, Selenium WebDriver
or a similar tool is used to prepare regression test packs, and tests are conducted at
the UI level rather than focusing on the service endpoints. Alternatively, BDD tools,
such as Cucumber with JUnit or Cucumber with Selenium WebDriver, can also be
used to prepare regression test packs. CI tools such as Jenkins or ARA are used
to automatically trigger regression test packs. There are other commercial tools,
such as TestComplete, that can also be used to build regression test packs.

Automated functional testing
Functional test cases are generally targeted at the UIs that consume the
microservices. These are business scenarios based on user stories or features.
These functional tests are executed on every build to ensure that the microservice
is performing as expected.

BDD is generally used in developing functional test cases. Typically in BDD,
business analysts write test cases in a domain-specific language but in plain English.
Developers then add scripts to execute these scenarios. Automated web testing tools
such as Selenium WebDriver are useful in such scenarios, together with BDD tools
such as Cucumber, JBehave, SpecFlow, and so on. JUnit test cases are used in the
case of headless microservices. There are pipelines that combine both regression
testing and functional testing as one step with the same set of test cases.

Automated acceptance testing
This is much similar to the preceding functional test cases. In many cases, automated
acceptance tests generally use the screenplay or journey pattern and are applied at
the web application level. The customer perspective is used in building the test cases
rather than features or functions. These tests mimic user flows.

BDD tools such as Cucumber, JBehave, and SpecFlow are generally used in these
scenarios together with JUnit or Selenium WebDriver, as discussed in the previous
scenario. The nature of the test cases is different in functional testing and acceptance
testing. Automation of acceptance test packs is achieved by integrating them
with Jenkins. There are many other specialized automatic acceptance testing tools
available on the market. FitNesse is one such tool.

The Microservices Development Life Cycle

[394]

Performance testing
It is important to automate performance testing as part of the delivery pipeline. This
positions performance testing from a gate check model to an integral part of the
delivery pipeline. By doing so, bottlenecks can be identified at very early stages of
build cycles. In some organizations, performance tests are conducted only for major
releases, but in others, performance tests are part of the pipeline. There are multiple
options for performance testing. Tools such as JMeter, Gatling, Grinder, and so on
can be used for load testing. These tools can be integrated into the Jenkins workflow
for automation. Tools such as BlazeMeter can then be used for test reporting.

Application Performance Management tools such as AppDynamics, New Relic,
Dynatrace, and so on provide quality metrics as part of the delivery pipeline. This
can be done using these tools as part of the performance testing environment. In
some pipelines, these are integrated into the functional testing environment to get
better coverage. Jenkins has plugins in to fetch measurements.

Real user flow simulation or journey testing
This is another form of test typically used in staging and production environments.
These tests continuously run in staging and production environments to ensure
that all the critical transactions perform as expected. This is much more useful
than a typical URL ping monitoring mechanism. Generally, similar to automated
acceptance testing, these test cases simulate user journeys as they happen in the real
world. These are also useful to check whether the dependent microservices are up
and running. These test cases could be a carved-out subset of acceptance test cases
or test packs created using Selenium WebDriver.

Automated security testing
It is extremely important to make sure that the automation does not violate the
security policies of the organization. Security is the most important thing, and
compromising security for speed is not desirable. Hence, it is important to integrate
security testing as part of the delivery pipeline. Some security evaluations are
already integrated in the local build environment as well as in the integration
environment, such as SonarQube, Find Security Bugs, and so on. Some security
aspects are covered as part of the functional test cases. Tools such as BDD-Security,
Mittn, and Gauntlt are other security test automation tools following the BDD
approach. VAPT can be done using tools such as ImmuniWeb. OWASP ZAP and
Burp Suite are other useful tools in security testing.

Chapter 10

[395]

Exploratory testing
Exploratory testing is a manual testing approach taken by testers or business users
to validate the specific scenarios that they think automated tools may not capture.
Testers interact with the system in any manner they want without prejudgment.
They use their intellect to identify the scenarios that they think some special users
may explore. They also do exploratory testing by simulating certain user behavior.

A/B testing, canary testing, and blue-green deployments
When moving applications to production, A/B testing, blue-green deployments,
and canary testing are generally applied. A/B testing is primarily used to review
the effectiveness of a change and how the market reacts to the change. New features
are rolled out to a certain set of users. Canary release is moving a new product or
feature to a certain community before fully rolling out to all customers. Blue-green is
a deployment strategy from an IT point of view to test the new version of a service.
In this model, both blue and green versions are up and running at some point of
time and then gracefully migrate from one to the other.

Other nonfunctional tests
High availability and antifragility testing (failure injection tests) are also important
to execute before production. This helps developers unearth unknown errors that
may occur in a real production scenario. This is generally done by breaking the
components of the system to understand their failover behavior. This is also helpful
to test circuit breakers and fallback services in the system. Tools such as Simian
Army are useful in these scenarios.

Testing in production
Testing in Production (TiP) is as important as all the other environments as we can
only simulate to a certain extend. There are two types of tests generally executed
against production. The first approach is running real user flows or journey tests in a
continuous manner, simulating various user actions. This is automated using one of
the Real User Monitoring (RUM) tools, such as AppDynamics. The second approach
is to wiretap messages from production, execute them in a staging environment, and
then compare the results in production with those in the staging environment.

The Microservices Development Life Cycle

[396]

Antifragility testing
Antifragility testing is generally conducted in a preproduction environment identical
to production or even in the production environment by creating chaos in the
environment to take a look at how the application responds and recovers from these
situations. Over a period of time, the application gains the ability to automatically
recover from most of these failures. Simian Army is one such tool from Netflix.
Simian Army is a suite of products built for the AWS environment. Simian Army is
for disruptive testing using a set of autonomous monkeys that can create chaos in
the preproduction or production environments. Chaos Monkey, Janitor Monkey,
and Conformity Monkey are some of the components of Simian Army.

Target test environments
The different test environments and the types of tests targeted on these environments
for execution are as follows:

•	 Development environment: The development environment is used to test
the coding style checks, bad practices, potential bugs, unit tests, and basic
security scanning.

•	 Integration test environment: Integration environment is used for unit
testing and regression tests that span across multiple microservices.
Some basic security-related tests are also executed in the integration
test environment.

•	 Performance and diagnostics: Performance tests are executed in the
performance test environment. Application performance testing tools
are deployed in these environments to collect performance metrics and
identify bottlenecks.

•	 Functional test environment: The functional test environment is used to
execute a sanity test and functional test packs.

•	 UAT environment: The UAT environment has sanity tests, automated
acceptance test packs, and user journey simulations.

•	 Staging: The preproduction environment is used primarily for sanity tests,
security, antifragility, network tests, and so on. It is also used for user journey
simulations and exploratory testing.

•	 Production: User journey simulations and RUM tests are continuously
executed in the production environment.

Making proper data available across multiple environments to support test cases is
the biggest challenge. Delphix is a useful tool to consider when dealing with test data
across multiple environments in an effective way.

Chapter 10

[397]

Continuous deployment
Continuous deployment is the process of deploying applications to one or more
environments and configuring and provisioning these environments accordingly. As
discussed in Chapter 9, Managing Dockerized Microservices with Mesos and Marathon,
infrastructure provisioning and automation tools facilitate deployment automation.

From the deployment perspective, the released Docker images are moved to
production automatically once all the quality checks are successfully completed.
The production environment, in this case, has to be cloud based with a cluster
management tool such as Mesos or Marathon. A self-service cloud environment
with monitoring capabilities is mandatory.

Cluster management and application deployment tools ensure that application
dependencies are properly deployed. This automatically deploys all the
dependencies that are required in case any are missing. It also ensures that a
minimum number of instances are running at any point in time. In case of failure, it
automatically rolls back the deployments. It also takes care of rolling back upgrades
in a graceful manner.

Ansible, Chef, or Puppet are tools useful in moving configurations and binaries to
production. The Ansible playbook concepts can be used to launch a Mesos cluster
with Marathon and Docker support.

Monitoring and feedback
Once an application is deployed in production, monitoring tools continuously
monitor its services. Monitoring and log management tools collect and analyze
information. Based on the feedback and corrective actions needed, information is
fed to the development teams to take corrective actions, and the changes are pushed
back to production through the pipeline. Tools such as APM, Open Web Analytics,
Google Analytics, Webalizer, and so on are useful tools to monitor web applications.
Real user monitoring should provide end-to-end monitoring. QuBit, Boxever,
Channel Site, MaxTraffic, and so on are also useful in analyzing customer behavior.

Automated configuration management
Configuration management also has to be rethought from a microservices and
DevOps perspective. Use new methods for configuration management rather than
using a traditional statically configured CMDB. The manual maintenance of CMDB
is no longer an option. Statically managed CMDB requires a lot of mundane tasks
to maintain entries. At the same time, due to the dynamic nature of the deployment
topology, it is extremely hard to maintain data in a consistent way.

The Microservices Development Life Cycle

[398]

The new styles of CMDB automatically create CI configurations based on an
operational topology. These should be discovery based to get up-to-date information.
The new CMDB should be capable of managing bare metals, virtual machines,
and containers.

Microservices development governance,
reference architectures, and libraries
It is important to have an overall enterprise reference architecture and a standard
set of tools for microservices development to ensure that development is done in a
consistent manner. This helps individual microservices teams to adhere to certain
best practices. Each team may identify specialized technologies and tools that are
suitable for their development. In a polyglot microservices development, there are
obviously multiple technologies used by different teams. However, they have to
adhere to the arching principles and practices.

For quick wins and to take advantage of timelines, microservices development
teams may deviate from these practices in some cases. This is acceptable as long as
the teams add refactoring tasks in their backlogs. In many organizations, although
the teams make attempts to reuse something from the enterprise, reuse and
standardization generally come as an afterthought.

It is important to make sure that the services are catalogued and visible in the
enterprise. This improves the reuse opportunities of microservices.

Summary
In this chapter, you learned about the relationship between microservices and
DevOps. We also examined a number of practice points when developing
microservices. Most importantly, you learned the microservices development
life cycle.

Later in this chapter, we also examined how to automate the microservices delivery
pipeline from development to production. As part of this, we examined a number of
tools and technologies that are helpful when automating the microservices delivery
pipeline. Finally, we touched base with the importance of reference architectures in
microservices governance.

Putting together the concepts of microservices, challenges, best practices, and various
capabilities covered in this book makes a perfect recipe for developing successful
microservices at scale.

[399]

Index
A
agents 348
Agile software development

URL 380
Airbnb

about 45
URL 45

Amazon
about 46
URL 46

Amazon EC2 Container Service (ECS) 321
Angel 207
Apache Mesos 346, 347
application

autoscaling 266
application information

configuring 99
appropriate microservice boundaries

establishing 106
architecture, Mesos

about 349
framework 350
master 350
slave 350
ZooKeeper 350

autoconfig 98
autoscaling

about 262, 263
benefits 263-265
different autoscaling models 265
in cloud 267

autoscaling approaches
about 268
predictive autoscaling 271
scaling, based on business parameters 270

scaling, based on message
queue length 270

scaling, during specific time periods 269
scaling, with resource constraints 268

autoscaling ecosystem
about 273
life cycle manager 273
load balancer 273
Microservices 273
service registry 273

AWS
setting up 354, 355

AWS Lambda
reference 5

B
Backend as a Service (BaaS) 44
benefits, microservices

about 23
build organic systems, enabling 28
coexistence of different versions,

allowing 30
DevOps, enabling 33
elastically scalable 25-27
event-driven architecture, supporting 32
experimentation, enabling 24
innovation, enabling 25
polyglot architecture support 23, 24
selectively scalable 26, 27
self-organizing systems, building 31
substitution, allowing 27, 28
technology debt, reducing 29

best-of-the-breed components
dashboards 290
log shippers 289

[400]

log storage 289
bill of materials (BOM) 63
Bin packing algorithm 343
Boot2Docker 321
bounded context 106, 107
Brixton 207
BrownField PSS

environment, setting up for 210
BrownField PSS architecture

defining 256, 257
BrownField PSS microservices

limitations 315
BrownField PSS microservices, autoscaling

about 272
capabilities 272
custom life cycle manager, implementing

with Spring Boot 274
deployment topology 274, 275
execution flow 275, 276
life cycle manager code 277-280
life cycle manager, running 281, 282

BrownField PSS services
deploying 363, 364
preparing 361, 362
reviewing 365, 366

BrownField services
running, on EC2 332, 333

business case
defining 165

Business Process Management (BPM)
about 121
use cases 121

C
Calico 316
candidate tests, for automation

about 392
A/B testing 395
antifragility testing 396
automated acceptance testing 393
automated functional testing 393
automated sanity tests 392
automated security testing 394
blue-green deployments 395
canary testing 395

exploratory testing 395
nonfunctional tests 395
performance testing 394
real user flow simulation or

journey testing 394
regression testing 392
Testing in Production (TiP) 395

CDNs (Content Delivery Networks) 164
centralized logging solution

about 286
log dashboard 287
log shippers 287
log store 287
log stream processor 287
log streams 287

cgroups 325, 348
characteristics, of microservices

about 10
antifragility 16
automation 14
characteristics of services 11, 12
distributed and dynamic 15, 16
fail fast 17
lightweight 12, 13
polyglot architecture 13, 14
self-healing 17
services are first-class citizens 11
supporting ecosystem 15

characteristics of services, microservices
loose coupling 11
service abstraction 11
service composeability 12
service contract 11
service interoperability 12
service reuse 11
services are discoverable 12
statelessness 12

circuit breaker pattern
reference 302

cloud
as self-service infrastructure, for

microservices 376
cluster management

about 340
features 340
functioning 341
relationship with microservices 344

[401]

relationship with virtualization 344
with Mesos and Marathon 348

cluster management solutions
about 344, 345
Apache Mesos 346, 347
Docker Swarm 345
Fleet 347
Kubernetes 346
Nomad 347

Command Query Responsibility
Segregation (CQRS) 109

communication styles, designing
asynchronous style communication 112
style, selecting 112-114
synchronous style communication 111

components, Spring Cloud
Netflix OSS 210

comprehensive microservice example
developing 86-96

Config server URL
Config Server, accessing

from clients 218-222
defining 217
references 218

configurable items (CIs) 143
Configuration Management Database

(CMDB) 143
containerization

about 334
future 334
security issues 334
unikernels 334

containers
about 316
benefits 319
DevOps 319
immutable containers 320
lightweight 319
lower license cost 319
portable 319
reusable 320
scalable 319
self-contained 319
version controlled 319
versus, virtual machines (VMs) 317, 318

Content Management System (CMS) 23

continuous delivery pipeline, automating
about 387
automated testing 391, 392
continuous deployment 397
continuous integration 390
development stage 389
monitoring and feedback 397

Continuous Integration (CI) tools 14
continuous integration workflow

about 391
build and QA 391
integration tests 391
packaging 391

Conway's Law
reference 45

core capabilities, microservices
capability model

about 145
API gateway 146
business capability definition 145
event sourcing 145
service endpoints and communication

protocols 146
service listeners 145
storage capability 145
user interfaces 146

Corporate Customer microservice 29
create, read, update, and delete (CRUD) 86
cross-origin

enabling, for microservices 82, 83
Customer microservices 29
Customer Profile microservice

about 11
Get Customer 11
Register Customer 11

Customer service 31
custom health module

adding 99-101
custom metrics, building 101, 102

D
data analysis

data lakes, used 310, 311
Database Lifecycle Management (DLM) 381
data lake 310

[402]

default embedded web server
changing 77

dependencies, microservice boundaries
dependency graph 176
events, as opposed to query 169, 170
events, as opposed to synchronous

updates 170-172
requirements, challenging 172, 173
service boundaries, challenging 173-175

development environment
setting up 49, 50

development philosophy
Agile practice 379
design thinking 378
selecting 378
start-up model 379

development stage
about 389
artifact repository 390
behavior driven design (BDD) 389
build tool 390
consumer-driven contracts 389
database schemas 390
mock testing 389
source code 389
source code repository 390
unit test cases 389

DevOps
about 7
as practice and process, for

microservices 376
defining 372-374
development and operations, bridging 375
tasks, automating 374
URL 7
value-driven delivery 374
wastage, reducing 374

DevOps-style microservice life cycle process
Agile development 386
Application Release Automation

(ARA) 385
continuous delivery (CD) 385
continuous deployment 385
continuous integration (CI) 385, 386
continuous monitoring and feedback 387
continuous release 387

continuous testing 387
defining 385
value-driven planning 386

Docker
about 316, 321
concepts 323
key components 322
microservices, deploying 326-330
RabbitMQ, running on 330
URL 326

Docker client 322
Docker concepts

Docker containers 325
Dockerfile 326
Docker images 323, 324
Docker registry 325, 326

Docker daemon 322
Docker file

contents 327, 328
Docker Hub account

reference 331
Dockerization 321
Docker registry

Docker hub, setting up 331
microservices, publishing to

Docker hub 331
using 330

Docker Swarm 345
domain-driven design (DDD)

about 106
URL 106

Drawbridge 316
Drools 120
dump 98
dynamic discovery

defining 232
dynamic resource provisioning and

deprovisioning 263
dynamic service registration

defining 232

E
eBay

about 46
URL 46

[403]

ecosystem capabilities
building 187

elasticity 263
Elasticsearch

URL 290
engine 348
Enterprise Application integration

(EAI) 191
Enterprise Integration Patterns (EIP) 35
Enterprise Service Bus (ESB) 16
Eureka

defining 234, 235
high availability 241-243
server, setting up 235-241

evolution
planning 165

evolution, microservices
about 1
business demand, as catalyst 2, 3
imperative architecture evolution 4, 5
technology, as catalyst 4

examples, microservices
about 17
holiday portal 17-19
microservice-based order management

system 20, 21
travel agent portal 22, 23

F
factors

defining 177, 178
FakeSMTP

reference 95
Feign

defining 227-229
Fleet 347
Fly By Points 17
followers 347

G
gateway 325
Gilt

about 46
URL 46

Guest OS 317

H
HAL (Hypertext Application Language)

browser 68
HATEOAS example 68
health 98
hexagonal architecture, microservices

reference 6
high availability

URL 226
high availability, of Zuul

about 249
Eureka client 250
not Eureka client 251

honeycomb analogy 8
Hypertext As The Engine Of Application

State. See HATEOAS example

I
info 98
infrastructure

autoscaling 266
infrastructure capabilities, microservices

capability model
about 146
application life cycle management 147
cloud 146
cluster control and provisioning 147
containers or virtual machines 146

in-memory data grid (IMDG) 27
INPUT queue 31
instance ID 361
Integration Platform as a Service (iPaaS) 4
Intelligent Business Process Management

(iBPM) 121

J
JDK 1.8

reference 49
jobs 347
JSch (Java Secure Channel) 279
JSON structure

container 364
cpus 363
id 363
image 364

[404]

instances 363
mem 363
network 364
portMappings 364

K
key capabilities, cluster management

software
about 341
agility 342
cluster management 341
deployments 341
health 341
infrastructure abstraction 342
isolation 342
resource allocation 342
resource optimization 342
scalability 341
service availability 342

key components, automated microservices
deployment topology

about 261
Eureka client 261
Ribbon client 261

key components, Docker
about 322
Docker client 322
Docker daemon 322

Kubernetes 346

L
Lambda architecture

reference 287
leader 347
libraries 398
life cycle manager

about 272, 273, 367
decision engine 273
deployment engine 273
deployment rules 273
metrics collection 273
rewriting, with Mesos and Marathon 368
scaling policies 273
updating 334

Lmctfy 316

logging solutions
best-of-the-breed integration 288
cloud services 288
custom logging implementation 290-292
distributed tracing, with Spring Cloud

Sleuth 293-295
off-the-shelf solutions 288
selecting 288

log management challenges 284, 285
Loyalty Points microservice 29
LXD 316

M
manager 345
mappings 98
Marathon

about 352
features 352
implementing, for BrownField

microservices 353, 354
installing 356
reference 356
running as services 358

Marathon autoscale 367
master 346
Maven 3.3.1

reference 50
Mean Time Between Failures (MTBF) 17
Mean Time To Recover (MTTR) 17
Mesos

about 348, 349
architecture 349, 350
configuring 357
implementing, for BrownField

microservices 353, 354
installing 356
reference 356
running as services 358
workflow diagram 351

Mesos slave
running, in command line 359, 360

metrics 98
Microservice A 383
Microservice B 383
microservice boundaries

agile teams 109

[405]

autonomous functions 107
changeability 110
coupling 110
dependencies, analyzing 167-169
identifying 167
microservice, as product 110
most appropriate function 108
polyglot architecture 108
replicability 110
selective scaling 108
single responsibility 109
size, of deployable unit 108
subdomain 108

microservice capability model
reviewing 260

microservice monitoring
about 297
actions 299
aggregation and correlation of metrics 299
alerts 299
Application Performance Monitoring

(APM) approach 300
challenges 298-300
dashboards 299
Hystrix streams, aggregating

with Turbine 307-310
metrics sources and data collectors 299
microservice dependencies,

monitoring 301, 302
objectives 298
processing metrics and actionable

insights 299
real user monitoring (RUM) 300
Spring Cloud Hystrix, for fault-tolerant

microservices 302-306
synthetic monitoring 300
tools 300, 301
user experience monitoring 300

microservices
about 1, 5
and containers 320, 321
architecture 6
benefits 23, 165
characteristics 10
Customer 9
data synchronization, during

migration 178-180

defining 164
deploying, in Docker 326-330
documenting 102, 103
evolution 1
examples 17
hexagonal architecture 6
honeycomb analogy 8
Order 9
principles 8
prioritizing, for migration 177, 178
Product 9
reference data, managing 181-183
relationship, with other architecture 33
scaling, with Spring Cloud 260-262
use cases 43

microservices-based architecture
examining 7

microservices capabilities
reviewing 204

microservices capability model
about 144, 145
core capabilities 145
governance capabilities 145
infrastructure capabilities 145, 146
process and governance capabilities 148
reviewing 152, 153
supporting capabilities 145-147

microservices challenges
about 139
data islands 139, 140
dependency management 141
governance challenges 142
infrastructure provisioning 144
logging 140, 141
microservices, testing 143
monitoring 140, 141
operation overheads 142
organization culture 142

microservices development
practice points 377

microservices development teams 398
microservices, on cloud

about 332
Docker, installing on AWS EC2 332

Minimum Viable Product (MVP)
about 380
using 380

[406]

modules
migrating 187

N
Netflix

about 45, 210
URL 45

Netflix Open Source Software
(Netflix OSS) 210

Nike
about 46
URL 46

nodes 345, 346
Nomad 347

O
OAuth

reference 79
Orbitz

about 46
URL 46

Order Event 32
OUTPUT queue 32
oversubscription 343

P
Passenger Sales and Service (PSS) 151
patterns and common design decisions

about 105, 106
API gateways, using in

microservices 131-133
appropriate microservice boundaries,

establishing 106
bulk operations, in microservices 138
communication styles, designing 111
data store, sharing 123, 124
design, for cross origin 136
ESB and iPaaS, using with

microservices 133, 134
microservice, on multiple VMs 119
microservice, on VM 119
number of endpoints 118, 119
orchestration 115-118
role, of BPM and workflows 121-123
rules engine 120, 121

service endpoint design consideration 127
service versioning considerations 134-136
shared libraries, handling 129
shared reference data, handling 136, 137
transaction boundaries, setting up 125
user interfaces, in microservices 130, 131

Platform as a Services (PaaS) 4
pods 346
POJO (Plain Old Java Object) 208
pom file

reference 63
practice points, microservices development

about 377
automated configuration management 397
business motivation and value 377
challenges around databases,

addressing 381
continuous delivery pipeline,

automating 387, 388
development philosophy, selecting 378
DevOps-style microservice life cycle

process, defining 385, 386
legacy hotspot 380
microservices ecosystem, building 384
mindset, changing from project to product

development 377
Minimum Viable Product (MVP), using 380
self-organizing teams, establishing 381-383
self-service cloud, building 384

principles, of microservices
about 8
autonomous services 9, 10
single responsibility principle 8, 9

process and governance capabilities,
microservices capability model

about 148
DevOps 148
DevOps tools 149
microservice documentation 149
microservices repositor 149
reference architecture and libraries 149

protocol selection
about 127
API documentations 128
HTTP and REST endpoints 128
message-oriented services 128
optimized communication protocols 128

[407]

PSS application
about 158
architectural view 154, 155
business process view 153
defining 153
deployment view 157
design view 155
domain boundaries 163
functional view 154
implementation view 156
limitation 158
shared data 160, 161
single database 161
stop gap fix 159

PSS Implementation, BrownField
reviewing 204, 205

R
RabbitMQ

running, on Docker 330
URL 226

Random algorithm 343
reactive programming

reference 20
Real Application Cluster (RAC) 159
Real User Monitoring (RUM) tools 395
reference architectures 398
relationship, microservices

about 33
relations, with SOA 33, 34
relations, with Twelve-Factor Apps 37

relationship, microservices with SOA
about 33, 34
legacy modernization 35
monolithic application 36
service-oriented application 36
service-oriented integration 34, 35

relationship, microservices with
Twelve-Factor Apps

about 37
backing services 39, 40
concurrency, scaling out 41
configurations, externalizing 39
dependencies, bundling 38
development and production parity 42
disposability, with minimal overhead 41

logs, externalizing 42
package admin processes 43
services, exposing through

port bindings 41
single codebase 38

RESTful microservices
building, Spring Boot used 56

RESTful service
developing 50-55

Ribbon
about 230
defining, for load balancing 229-231

Rocket 316
RPM (Requests Per Minute) 276

S
sales closing transactions 270
Scale Cube

about 26
reference 26

Search API Gateway microservice 326
servers 347
service availability

and discovery 232
registering 232

service endpoint design consideration
about 127
contract design 127
protocol selection 127

Service Oriented Architecture (SOA) 1
Service-Oriented Integration (SOI) 35
session handling

and security 184, 185
shopping logic 16
single database

native queries 161, 162
stored procedures 163

single sign-on (SSO) 183
SMTP server 31
SOA principles

reference 12
software-defined infrastructure 376
software development life cycle (SDLC) 371
SOLID design pattern

reference 8
span 294

[408]

Spread algorithm 343
Spring Boot

about 49, 57
used, for building RESTful

microservices 56
Spring Boot actuators

about 97
monitoring, JConsole used 98
monitoring, SSH used 99

Spring Boot command-line tool
reference 57

Spring Boot configuration
.yaml file, using 75
about 73
autoconfiguration 73
configuration file location, changing 74
custom properties, reading 75
default configuration values, overriding 74
multiple configuration profiles, using 76
properties, reading 76

Spring Boot Java microservice
Application.java, examining 64, 65
application.properties, examining 65
ApplicationTests.java, examining 65, 66
developing, STS used 58-62
pom file, examining 62-64
testing 67

Spring Boot messaging
implementing 83-86

Spring Boot microservice
developing, CLI used 57, 58
developing, Spring Initializr used 68-72

Spring Boot security
implementing 77
microservice, securing with

basic security 77, 78
microservice, securing with OAuth2 79-81

Spring Cloud
and Cloud Foundry, comparing 206
capabilities 208
components 207-209
defining 205, 206
for scaling microservices 260, 261
releases 206, 207

Spring Cloud Config
changes, completing for Config

server usage 227

Config server, for configuration files 226
Config server health, monitoring 226
Config server, setting up 214-216
Config server URL, defining 217
Config server, using 214
configuration changes, handling 222
defining 211-213
high availability, setting up for Config

server 224-226
Spring Cloud Bus, for propagating

configuration changes 223, 224
Spring Cloud examples

references 215
Spring Initializr project

reference 57
Spring Starter project

URL 228
Spring Tool Suite 3.7.2 (STS)

reference 49
streams

for reactive microservices 252-256
subnet 325
supporting capabilities, microservices

capability model
about 147
central log management 147
data lake 148
dependency and CI management 148
monitoring and dashboards 148
reliable messaging 148
security service 148
service configuration 148
service registry 147
software defined load balancer 147
testing tools 148

SystemdNspawn 316

T
t2.large 332
t2.micro EC2 instances 354
target architecture

about 188, 189
exceptions, handling 191-194
integration, with other systems 191
internal layering, of microservices 189
microservices, orchestrating 190

[409]

shared libraries, managing 191
target implementation view

about 194
implementation projects 195, 196
project, running 196-200
project, testing 196-200

target test environments
about 396
development environment 396
functional test environment 396
integration test environment 396
performance and diagnostics 396
production 396
staging 396
UAT environment 396

task groups 347
tasks 347
technology metamodel 368
Testing in Production (TiP) 395
test strategy 186
TPM (Transactions Per Minute) 276
trace 294
traditional web application

moving, to microservices 55
transaction boundaries

distributed transaction scenarios 126
setting up 125
use cases, altering 125, 126

transaction processing facility (TPF) 380
transition plan

establishing 166
transition point of view

queries 166
Twitter

about 46
URL 46

U
Uber

about 45
URL 45

use cases, microservices
about 43, 44
microservices early adopters 45
monolithic migrations 47

user interfaces
and web applications 183, 184

V
Veritas Risk Advisor (VRA) 302
virtual engine (VE) 316
virtual machines (VMs)

Hyper-V 317
versus containers 317, 318
Zen 317

W
web applications

and user interfaces 183, 184

X
XebiaLabs periodic table

reference 387

Z
ZooKeeper

configuring 356
installing 355, 356
reference 356
running as services 358

Zuul
completing, for all services 251
high availability 249
setting up 245-249
using 247, 248

Zuul proxy
defining, as API gateway 244

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Demystifying Microservices
	The evolution of microservices
	Business demand as a catalyst for microservices evolution
	Technology as a catalyst for the microservices evolution
	Imperative architecture evolution

	What are microservices?
	Microservices – the honeycomb analogy
	Principles of microservices
	Single responsibility per service
	Microservices are autonomous

	Characteristics of microservices
	Services are first-class citizens
	Characteristics of services in a microservice

	Microservices are lightweight
	Microservices with polyglot architecture
	Automation in a microservices environment
	Microservices with a supporting ecosystem
	Microservices are distributed and dynamic
	Antifragility, fail fast, and self-healing

	Microservices examples
	An example of a holiday portal
	A microservice-based order management system
	An example of a travel agent portal

	Microservices benefits
	Supports polyglot architecture
	Enabling experimentation and innovation
	Elastically and selectively scalable
	Allowing substitution
	Enabling to build organic systems
	Helping reducing technology debt
	Allowing the coexistence of different versions
	Supporting the building of self-organizing systems
	Supporting event-driven architecture
	Enabling DevOps

	Relationship with other architecture styles
	Relations with SOA
	Service-oriented integration
	Legacy modernization
	Service-oriented application
	Monolithic migration using SOA

	Relations with Twelve-Factor apps
	A single code base
	Bundling dependencies
	Externalizing configurations
	Backing services are addressable
	Isolation between build, release, and run
	Stateless, shared nothing processes
	Exposing services through port bindings
	Concurrency to scale out
	Disposability with minimal overhead
	Development and production parity
	Externalizing logs
	Package admin processes

	Microservice use cases
	Microservices early adopters
	The common theme is monolithic migrations

	Summary

	Chapter 2: Building Microservices with Spring Boot
	Setting up a development environment
	Developing a RESTful service – the legacy approach
	Moving from traditional web applications to microservices
	Using Spring Boot to build RESTful microservices
	Getting started with Spring Boot
	Developing the Spring Boot microservice using the CLI
	Developing the Spring Boot Java microservice using STS
	Examining the POM file
	Examining Application.java
	Examining application.properties
	Examining ApplicationTests.java
	Testing the Spring Boot microservice

	Developing the Spring Boot microservice using Spring Initializr – the HATEOAS example
	What's next?
	The Spring Boot configuration
	Understanding the Spring Boot autoconfiguration
	Overriding default configuration values
	Changing the location of the configuration file
	Reading custom properties
	Using a .yaml file for configuration
	Using multiple configuration profiles
	Other options to read properties

	Changing the default embedded web server
	Implementing Spring Boot security
	Securing microservices with basic security
	Securing a microservice with OAuth2

	Enabling cross-origin for microservices
	Implementing Spring Boot messaging
	Developing a comprehensive microservice example
	Spring Boot actuators
	Monitoring using JConsole
	Monitoring using SSH

	Configuring application information
	Adding a custom health module
	Building custom metrics

	Documenting microservices
	Summary

	Chapter 3: Applying Microservices Concepts
	Patterns and common design decisions
	Establishing appropriate microservice boundaries
	Autonomous functions
	Size of a deployable unit
	Most appropriate function or subdomain
	Polyglot architecture
	Selective scaling
	Small, agile teams
	Single responsibility
	Replicability or changeability
	Coupling and cohesion
	Think microservice as a product

	Designing communication styles
	Synchronous style communication
	Asynchronous style communication
	How to decide which style to choose?

	Orchestration of microservices
	How many endpoints in a microservice?
	One microservice per VM or multiple?
	Rules engine – shared or embedded?
	Role of BPM and workflows
	Can microservices share data stores?
	Setting up transaction boundaries
	Altering use cases to simplify transactional requirements
	Distributed transaction scenarios

	Service endpoint design consideration
	Contract design
	Protocol selection

	Handling shared libraries
	User interfaces in microservices
	Use of API gateways in microservices
	Use of ESB and iPaaS with microservices
	Service versioning considerations
	Design for cross origin
	Handling shared reference data
	Microservices and bulk operations

	Microservices challenges
	Data islands
	Logging and monitoring
	Dependency management
	Organization culture
	Governance challenges
	Operation overheads
	Testing microservices
	Infrastructure provisioning

	The microservices capability model
	Core capabilities
	Infrastructure capabilities
	Supporting capabilities
	Process and governance capabilities

	Summary

	Chapter 4: Microservices Evolution – A Case Study
	Reviewing the microservices capability model
	Understanding the PSS application
	Business process view
	Functional view
	Architectural view
	Design view
	Implementation view
	Deployment view

	Death of the monolith
	Pain points
	Stop gap fix
	Retrospection
	Shared data
	Single database
	Domain boundaries

	Microservices to the rescue
	The business case
	Plan the evolution
	Evolutionary approach
	Identification of microservices boundaries
	Analyze dependencies

	Prioritizing microservices for migration
	Data synchronization during migration
	Managing reference data
	User interfaces and web applications
	Session handling and security

	Test strategy
	Building ecosystem capabilities

	Migrate modules only if required
	Target architecture
	Internal layering of microservices
	Orchestrating microservices
	Integration with other systems
	Managing shared libraries
	Handling exceptions

	Target implementation view
	Implementation projects
	Running and testing the project

	Summary

	Chapter 5: Scaling Microservices with Spring Cloud
	Reviewing microservices capabilities
	Reviewing BrownField's PSS implementation
	What is Spring Cloud?
	Spring Cloud releases
	Components of Spring Cloud
	Spring Cloud and Netflix OSS

	Setting up the environment for BrownField PSS
	Spring Cloud Config
	What's next?
	Setting up the Config server
	Understanding the Config server URL
	Accessing the Config Server from clients

	Handling configuration changes
	Spring Cloud Bus for propagating configuration changes
	Setting up high availability for the Config server
	Monitoring the Config server health
	Config server for configuration files
	Completing changes to use the Config server

	Feign as a declarative REST client
	Ribbon for load balancing
	Eureka for registration and discovery
	Understanding dynamic service registration and discovery
	Understanding Eureka
	Setting up the Eureka server
	High availability for Eureka

	Zuul proxy as the API gateway
	Setting up Zuul
	High availability of Zuul
	High availability of Zuul when the client is also a Eureka client
	High availability when the client is not a Eureka client

	Completing Zuul for all other services

	Streams for reactive microservices
	Summarizing the BrownField PSS architecture
	Summary

	Chapter 6: Autoscaling Microservices
	Reviewing the microservice capability model
	Scaling microservices with Spring Cloud
	Understanding the concept of autoscaling
	The benefits of autoscaling
	Different autoscaling models
	Autoscaling an application
	Autoscaling the infrastructure

	Autoscaling in the cloud

	Autoscaling approaches
	Scaling with resource constraints
	Scaling during specific time periods
	Scaling based on the message queue length
	Scaling based on business parameters
	Predictive autoscaling

	Autoscaling BrownField PSS microservices
	The capabilities required for an autoscaling system
	Implementing a custom life cycle manager using Spring Boot
	Understanding the deployment topology
	Understanding the execution flow
	A walkthrough of the life cycle manager code
	Running the life cycle manager

	Summary

	Chapter 7: Logging and Monitoring Microservices
	Reviewing the microservice capability model
	Understanding log management challenges
	A centralized logging solution
	The selection of logging solutions
	Cloud services
	Off-the-shelf solutions
	Best-of-breed integration
	Log shippers
	Log stream processors
	Log storage
	Dashboards

	A custom logging implementation
	Distributed tracing with Spring Cloud Sleuth

	Monitoring microservices
	Monitoring challenges
	Monitoring tools
	Monitoring microservice dependencies
	Spring Cloud Hystrix for fault-tolerant microservices
	Aggregating Hystrix streams with Turbine

	Data analysis using data lakes
	Summary

	Chapter 8: Containerizing Microservices with Docker
	Reviewing the microservice capability model
	Understanding the gaps in BrownField PSS microservices
	What are containers?
	The difference between VMs and containers
	The benefits of containers
	Microservices and containers
	Introduction to Docker
	The key components of Docker
	The Docker daemon
	The Docker client

	Docker concepts
	Docker images
	Docker containers
	The Docker registry
	Dockerfile

	Deploying microservices in Docker
	Running RabbitMQ on Docker
	Using the Docker registry
	Setting up the Docker Hub
	Publishing microservices to the Docker Hub

	Microservices on the cloud
	Installing Docker on AWS EC2

	Running BrownField services on EC2
	Updating the life cycle manager
	The future of containerization – unikernels and hardened security
	Summary

	Chapter 9: Managing Dockerized Microservices with Mesos and Marathon
	Reviewing the microservice capability model
	The missing pieces
	Why cluster management is important
	What does cluster management do?
	Relationship with microservices
	Relationship with virtualization
	Cluster management solutions
	Docker Swarm
	Kubernetes
	Apache Mesos
	Nomad
	Fleet

	Cluster management with Mesos and Marathon
	Diving deep into Mesos
	The Mesos architecture
	Marathon

	Implementing Mesos and Marathon for BrownField microservices
	Setting up AWS
	Installing ZooKeeper, Mesos, and Marathon
	Configuring ZooKeeper
	Configuring Mesos
	Running Mesos, Marathon, and ZooKeeper
as services
	Preparing BrownField PSS services
	Deploying BrownField PSS services
	Reviewing the deployment

	A place for the life cycle manager
	Rewriting the life cycle manager with Mesos and Marathon

	The technology metamodel
	Summary

	Chapter 10: The Microservices Development Life Cycle
	Reviewing the microservice capability model
	The new mantra of lean IT – DevOps
	Reducing wastage
	Automating every possible step
	Value-driven delivery
	Bridging development and operations

	Meeting the trio – microservices, DevOps, and cloud
	Cloud as the self-service infrastructure for Microservices
	DevOps as the practice and process for microservices

	Practice points for microservices development
	Understanding business motivation and value
	Changing the mindset from project to product development
	Choosing a development philosophy
	Design thinking
	The start-up model
	The Agile practice

	Using the concept of Minimum Viable Product
	Overcoming the legacy hotspot
	Addressing challenges around databases
	Establishing self-organizing teams
	Building a self-service cloud
	Building a microservices ecosystem
	Defining a DevOps-style microservice life cycle process
	Value-driven planning
	Agile development
	Continuous integration
	Continuous testing
	Continuous release
	Continuous monitoring and feedback

	Automating the continuous delivery pipeline
	Development
	Continuous integration
	Automated testing
	Continuous deployment
	Monitoring and feedback

	Automated configuration management

	Microservices development governance, reference architectures, and libraries
	Summary

	Index

